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Abstract
Even if the biochemical details of signaling networks are known, it is often hard
to track how information flows through the network. In combination with
experimental techniques, modular response analysis has proven useful in
analyzing the quantitative information transfer in signal transduction networks.
The sensitivity of a target (e.g., transcription factor, protein) to an upstream
stimulus (e.g., growth factor) can be determined by a so-called response
coefficient. We have used this methodology to analyze how information flows
in networks where the details of the mechanisms in the networks are known,
but parameters are lacking. Using a Monte Carlo approach, we apply this
method to track the routes of information flow. More specifically, we determine
whether a given species has no, positive or negative influence on any other
species in the network. Surprisingly, one can uniquely determine whether a
molecule activates or inhibits another one in more than 99% of the interactions
solely from the topology of the reaction network. To exemplify the methodology,
we briefly discuss three signaling networks of different complexity: (i) a Wnt
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signaling pathway model with 15 species, (ii) a MAPK signaling pathway model
with 200 species, and (iii) a large-scale signaling network of the entire cell with
over 6000 species.

1. Introduction

Even for very small and seemingly simple motifs that we often find in
signal transduction, it is hard to systematically deduce whether one mole-
cule activates or deactivates the other. Take, for example, a phosphorylation
event, where the kinase K converts the protein A into an active, phos-
phorylated form Ap (see Fig. 20.1A). Our intuition tells us that K activates
Ap. And indeed, if one analyzes the direct effects among the species, one
would say that an increase in K leads to a decrease in A and an increase in Ap

(see Fig. 20.1B), thereby K activates Ap. However, a decrease in A would
also lead to a decrease in Ap, and therefore K indirectly inhibits Ap (see
Fig. 20.1C). Thus, K has both a positive and an indirect negative effect on
Ap. Of course, for such simple motifs, one could deduce simple rules on
how to determine whether a molecule activates or deactivates the other.
In our example, a rule could be to investigate the effect on the product of a
reaction only. However, this simple example illustrates that it may become
very difficult to extract such rules in larger, complex networks, especially if
molecules contain multiple modification sites or form complexes.

Therefore, we decided to use the framework of modular response
analysis (MRA, see Kholodenko et al., 1997, 2002) to systematically analyze
whether the influence of one molecule on another molecule in the network
is positive or negative. Section 2 serves as an introduction to the mathemat-
ical theory behind MRA. After giving a short overview of conservation
analysis in Section 3, we utilize MRA and conservation analysis in Section 4
to extract information flow from reaction networks with the help of a
Monte Carlo approach.

A B C

K K K

A A AAp Ap Ap

Figure 20.1 Simple reaction network. (A) A kinase K drives the phosphorylation of A
to Ap. (B) Direct interactions in the network. (C) Global interactions between K and Ap

which are a combination of activation (green solid arrow) and inhibition (red dashed
arrow).
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2. Modular Response Analysis

MRA has been developed as a framework to analyze interactions
between species in hierarchical, information processing networks
(Bruggeman et al., 2002; Kholodenko et al., 1997, 2002). It has been
proven useful in reverse-engineering of network topologies (Santos et al.,
2007), and it has been used to analyze noise in regulatory networks
(Bruggeman et al., 2009). MRA is derived from and thus its notations
are closely related to metabolic control theory (Heinrich and Rapoport,
1974a,b; Kacser and Burns, 1973). However, as classical metabolic control
theory aims at investigating metabolic fluxes, MRA is applicable to
systems where there is no flux between different nodes in the network
but information transfer.

In the following, we will introduce the mathematical concepts behind
MRA exemplified with a small example system, which is described in
Fig. 20.2. A substrate S transforms to a product P catalyzed by enzyme E,
andP decays back toS.Wedefine the concentration vector c(t),which collects
the concentrations of all species in the network: c(t) ¼ [E(t), P(t), S(t)]T.
There are two fluxes in the network:

1 : S!E P; 2 : P ! S; E $ ; ð20:1Þ

Assuming mass-action and Michaelis–Menten kinetics, the reaction velo-
cities are then given by:

v c tð Þð Þ ¼
v1 c tð Þð Þ
v2 c tð Þð Þ
v3 c tð Þð Þ

2

4

3

5 ¼

k1E tð ÞS tð Þ
KM þ S tð Þ
k2P tð Þ
kþ3 % k%3E tð Þ

2

664

3

775: ð20:2Þ

From the reactions in Eq. (20.1), the stoichiometric matrix N can be
constructed as

N ¼
0 0 1
1 %1 0
%1 1 0

2

4

3

5; ð20:3Þ

where each row refers to the corresponding species in c(t), and each column
describes the corresponding reaction rate in v(c(t)). One can then describe
the dynamics of the concentrations in the system with the following
differential equation:
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d

dt
c tð Þ ¼ Nv c tð Þð Þ ¼ f c tð Þð Þ; ð20:4Þ

with c 2 Rm,N 2 Rm&n, and v 2 Rn. One property, the so-called unscaled
elasticity coefficient, is of particular importance for MRA. The elasticity
coefficient characterizes the sensitivity of a reaction rate to perturbations in a
species’ concentration. Therefore, it provides a measure of the change in a
reaction rate in response to a change in a species’ concentration. Negative
elasticity values represent inhibitory effects of a species on the reaction rate,
while positive elasticity values denote activating effects.

For a whole reaction network, this can be expressed by the elasticity
coefficient matrix e 2 Rn&m at steady state !c. It is formally defined as the
partial derivative of v(c(t)) with respect to c(t) such that

e ¼ @v c tð Þð Þ
@c tð Þ !c ¼

@!v

@!c
:

!!!! ð20:5Þ

For the example network of Eqs. (20.1)–(20.3), the unscaled elasticity
coefficient matrix evaluated at steady state reads:

e ¼

k1 !S

KM þ !S
0

k1KM !E

KM þ !Sð Þ2

0 k2 0
%k%3 0 0

2

6664

3

7775: ð20:6Þ

An effect of a species on a reaction has, in turn, effects on the rate by which
species change. These effects are captured by the Jacobian matrix J 2 Rm&m,

3

1

P

E

S

2

Figure 20.2 Example network. The transformation of substrate S to product P is
catalyzed by enzyme E. P then decays to S. Enzyme E is also produced and can
decay. Reactions 1 and 2 are irreversible, while reaction 3 is reversible.
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which is the linearization of the underlying dynamical system. It can be
calculated from the stoichiometric matrix and the elasticity matrix:

J ¼ @f c tð Þð Þ
@c tð Þ ¼ @ Nv c tð Þð Þð Þ

@c tð Þ ¼ N
@v c tð Þð Þ
@c tð Þ ¼ Ne: ð20:7Þ

For our example system, the Jacobian matrix reads:

J ¼

%k%3 0 0

k1 !S

KMþ!S
%k2

k1KM !E

KMþ!Sð Þ2

% k1!S

KMþ!S
k2 % k1KM !E

KMþ!Sð Þ2

2

6666664

3

7777775
: ð20:8Þ

The entries of the Jacobian can be used to determine whether one node
activates or inhibits another node. If an entry J(k,l) of the matrix is positive,
then an increase in node l increases the rate by which node k changes.
Consequently, node k influences node l positively.

In order to quantify the strength of the interaction, MRA then defines a
so-called local response matrix r 2 Rm&m, which can be interpreted as a
normalization of the Jacobian matrix. This matrix can be calculated by
dividing the rows of the Jacobian matrix by its diagonal elements:

r ¼ % diag Jð Þð Þ%1J: ð20:9Þ

An entry of this matrix quantifies how a concentration in steady state changes
when one perturbs the value of one concentration while others remain
constant. As for the Jacobian matrix, a nonzero entry implies that there is a
direct link between the corresponding species. Positive and negative entries
imply activation and inhibition, respectively. Therefore, the structure of the
local response matrix describes the direct interactions between species.

However, if all variables are allowed to change, not only direct interac-
tions but also indirect interactions, that is, interactions over several inter-
mediates, come into play. These influences are given by the global response
matrix R 2 Rm&m. Interestingly, this global response matrix can be calcu-
lated simply by inversion of the local response matrix:

R ¼ %r%1: ð20:10Þ

The influences between species can be categorized into three different cases.
First, species k is inactivated by species l if the (k,l)-th entry is less than zero.
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Second, species k activates species l if the (k,l )-th entry is greater than zero.
And third, there is no influence from species l to species k if the (k, l )th entry
is zero.

For our small example system, the local response matrix reads:

r ¼

%1 0 0
k1!S

k2 KM þ !Sð Þ
%1

k1KM !E

k2 KM þ !Sð Þ2

% KM þ !Sð Þ!S
KM !E

k2 KM þ !Sð Þ2

k1KM !E
%1

2

6666664

3

7777775
: ð20:11Þ

In this example, we immediately see one problem of the approach: The
matrix r has linearly dependent columns (2nd and 3rd column), that is,
its determinant is 0. Therefore, an inverse of r does not exist, and one
cannot calculate the global response matrix. The reason for the linear
dependence between columns is that there exist conserved moieties, that
is, that linear combinations of concentrations remain constant in the
system. In our example, the sum of the concentrations of S and P will
remain constant.

3. Conservation Analysis

In order to calculate the global response matrix, one needs to reduce
the system to variables that are independent. There exists a manifold of
algorithms to systematically reduce the system; readers are referred, for
example, to Reder (1988) and Vallabhajosyula et al. (2006). Once we
identified the conserved moieties, we can reorder the species such that the
first species (e.g., E and P in the case of the example system) are linearly
independent species and the remaining ones are at the end of the vector
(e.g., S). Note that there are typically many choices of which species one
can use as independent variables. (One could, e.g., also use E and S as
independent species.) After reordering the species, one needs to reorder the
stoichiometric matrix N accordingly, which will then decompose into:

N ¼ NR

N0

" #
; ð20:12Þ

whereNR 2 Rm0&n has linearly independent rows. Note that the number of
rowsm0 ofNR equals the rank of the stoichiometric matrixN. Further, from
conservation analysis, one obtains a link matrix L 2 Rm&m0 that relates the
stoichiometric matrix of the full system and the one of the reduced system by
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N ¼ LNR: ð20:13Þ

Along with this relationship, we can now reformulate Eq. (20.7) such that

J ¼ LNRe; ð20:14Þ

from which the Jacobian matrix for the reduced system results:

JR ¼ NReL: ð20:15Þ

For our example system, the matrices L, NR, and JR would read:

L ¼
1 0
0 1
0 %1

2

4

3

5; NR ¼ 0 0 1
1 %1 0

" #
; ð20:16Þ

and

JR ¼
%k%3 0

k1!S

KMþ!S
% k1KM !E

KMþ!Sð Þ2
% k2

2

64

3

75: ð20:17Þ

The local response matrix of the reduced system rR can now be determined
by normalization with the help of Eq. (20.9):

rR ¼
%1 0

k1 KMþ!Sð Þ!S
k1KM !E þ k2 KMþ!Sð Þ2

%1

2

4

3

5: ð20:18Þ

This matrix can be inverted to gain the global response matrix of the
reduced system

RR ¼
1 0

k1ðKM þ !SÞ!S
k1KM !E þ k2 KMþ!Sð Þ2

1

2

4

3

5: ð20:19Þ

From this, the interaction diagram in Fig. 20.3 can be deduced. Note that
for our small example system, the local and global interactions between the
linear independent species E and P are the same when we neglect self-loops,
as there are no intermediate species present.
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In Section 4, we present a recipe of how to deal with large reaction
networks. Further, we perform Monte Carlo computations on the local
responsematrix and analyze how and to what extend the interactions between
species in a system can be determined only from the systems topology.

4. From Reaction Schemes to Influence
Networks Using a Monte Carlo Approach

In the following, we exemplify how we can use MRA to extract
information flow from reaction networks. Typically, parameters within
large-scale networks are unknown or display high uncertainty. Here, we
address the question whether we can still deduce qualitatively how infor-
mation is passed through the network. To do so, we will employ a Monte
Carlo approach, where we sample the parameters from a distribution. It was
shown that such an approach is very useful when incomplete knowledge
about parameters is present (Murabito et al., 2011; Steuer et al., 2006). First,
we will reformulate MRA Eq. (20.5) in terms of normalized elasticity
coefficients ee:

ee ¼ @ln!v

@ln!c
¼ !c

!v

@!v

@!c
¼ !c

!v
e: ð20:20Þ

In matrix notation and solving for e, Eq. (20.20) yields

e ¼ !Vee!C%
1; ð20:21Þ

where !V ¼ diag !vð Þ and !C ¼ diag !cð Þ. In Michaelis–Menten-type enzy-
matic reactions, these normalized elasticity coefficients range typically
between zero and one for substrates, zero and minus one for products,

E

P

Figure 20.3 Response diagram. Interactions were deduced from the local and the
global response matrices of Eqs. (20.18) and (20.19). Activations are marked by a green
dashed arrow.
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and equal one for enzymes (see also Heinrich and Rapoport, 1974a,b, or
any review on metabolic control analysis).
Therefore, the reduced Jacobian is provided by

JR ¼ NR !Vee!C%1L; ð20:22Þ

while the local response matrix to investigate reads:

rR ¼ % diag JRð Þð Þ%1JR: ð20:23Þ

These equations are then used to performMonte Carlo sampling.NR andL
are known. Further, the signs of the entries in ee are known and we decided
to sample ee from a uniform distribution between 0 and 1, and set the sign
accordingly. In contrast, the values in the matrices !V and !C are unknown.
Therefore, we chose to sample !V and !C according to a lognormal distribu-
tion with parameters m ¼ 1 mM and s ¼ 0.8 mM (which corresponds to a
mean of 3.74 mM and standard deviation of 3.54 mM). For s samples, this
results in s different local response matrices rR

s .
In a next step, we compare the individual entries rsRk,l

of each sampled
system to conclude that (i) an interaction is an inhibition for all s samples if all
rsRk, l

< 0, (ii) an interaction is an activation for all s samples if all rsRk,l
> 0, and

(iii) an interaction varies between inhibition and activation when rsRk, l
6¼ 0

for all s samples and the sign of rsRk, l
changes at least ones in all samples s.

We will now demonstrate the Monte Carlo simulations on the interme-
diate-scale model of the Wnt pathway. The Wnt signaling plays an impor-
tant role in carcinogenesis. We use the kinetic model of the canonical Wnt
pathway (Fig. 20.4). The model was first derived by Lee et al. (2003). If Wnt
is not present, the so-called destruction complex consisting of APC, Axin,
and GSK3 forms and phosphorylates b-catenin. Phosphorylated b-catenin is
a substrate for ubiquitination and thus enters proteolysis. When Wnt is
present, it binds to cell surface receptor Frizzled which, in turn, activates
disheveled (Dsh). The active form of Dsh inhibits the destruction complex.
Then, less destruction complex is present to phosphorylate b-catenin.
Subsequently, access b-catenin accumulates and translocates to the nucleus
where it regulates genes together with the TCF.

From the conservation analysis, we find that there are four conserved
moieties in the model. Therefore, the Wnt model can be reduced from 15
overall species to 11 independent species. The unscaled elasticity coefficient
matrix e can be calculated according to Eq. (20.5). In order to test our
approach, we removed the exact kinetic laws, initial conditions, and param-
eter values defined in the model by Lee et al. (2003). We only sustained the
signs in e to preserve the original model structure. We then generated many
parameter sets sampled from the aforementioned distributions and
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calculated the local response matrix for every sample for each of the
parameter sets. When analyzing the effects of the number of Monte Carlo
samples, we find that 1000 is a typical number, where even for large-scale
networks, larger sample sizes do not provide further information (data not
shown). For the reduced Wnt model, we find that the signs of only three
local response coefficients change over the different sample sets. All other 26
interactions could be uniquely determined using the Monte Carlo approach
to be either activation (12 interactions) or inhibition (14 interactions). We
visualized the elements that are positive, negative, or changing between
positive and negative over all samples in the interaction diagram of
Fig. 20.5. As the diagonal of the local response matrix is minus one by
definition, we ignored to visualize the self-inhibitions in the diagram.

Within the sampling process, we can further calculate the global
response matrix for every sample in the same way we calculated the local
response matrix. The biological most meaningful global interaction is the
effect from input (Dshi) to output (TCF). The analysis of the corresponding
element in RR

s yields a changing sign for different samples. When we now
repeat the whole sampling process a thousand times (i.e., 1000 times 1000
samples), the corresponding element in the global response matrix is posi-
tive in 99.3 ' 0.26% of the cases. This result strongly suggests that Dshi has
an activating effect on TCF.

Wnt
wnt

signaling

Axin turnover

Axin-dependent
proteolysis

Destruction
core cycle

Nonaxin-dependent
proteolysis

Transcriptional
activation

Dshi Dsha

APC•Axin•GSK3

APC•Axin

APC TCF

b-Catenin•TCFb-Catenin

b-Catenin•APCP•AxinP•GSK3

b-Catenin•APC

APCP•AxinP•GSK3

b-CateninP

b-CateninP•APCP•AxinP•GSK3

Axin

GSK3

Figure 20.4 Reaction scheme of the Wnt model. Protein complexes are denoted by
the names of their components separated by bullets, while phosphorylated, inactive,
and active components are marked with a lowercase p, a lowercase i, or a lowercase a,
respectively. Single- and double-headed arrows denote irreversible and reversible
reactions, respectively. The individual reactions and their role in the Wnt pathway
are outlined in the text.
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The high percentage of uniquely determinable local interactions leads to
the hypothesis that the knowledge of interaction type and the stoichiomet-
ric matrix is sufficient to unveil the directionality of information flow also in
larger systems. To test this hypothesis, we applied our approach to larger and
very large signal transduction models. As one example, we used an SBML
(Bornstein et al., 2008) implementation of the MAPK model by Schoeberl
et al. (2002) that has 97 species and 148 reactions. Conservation analysis
yields five conserved moieties. As another example, we translated the whole
signaling part of the Reactome database (Matthews et al., 2009; Vastrik et al.,
2007) into a stoichiometric and an elasticity coefficient matrix with 6232
species and 3652 reactions. Conservation analysis shows that about half of
the present species are linearly dependent in this large network.

In Fig. 20.6, we compare the four models (e.g., Example, Wnt, MAPK,
and Reactome) with respect to the distributions of the signs in the local
response matrices over all 1000 samples. What becomes apparent is that
even for larger models, the fraction of interactions that change their signs
over the different sampling sets are very low. For the MAPK model, there
were only about 1.3% of all possible interactions, while the Reactome
model yielded a fraction of 0.6% of the nonunique interactions. Especially
in the Reactome network, the percentage of species that interact directly is
obviously very low. Here, also the fraction of unambiguous positive and
negative interactions is very low as well (1.5% and 1.8%).

Dshi

b-Cateninp

b-Cateninp•APCp•Axinp•GSK3

APCp•Axinp•GSK3

APC

b-Catenin•APCp•Axinp•GSK3

b-Catenin•APC b-Catenin

TCF

GSK3

Axin

Figure 20.5 Direct interactions in the reduced Wnt model. Protein complexes are
denoted by the names of their components separated by bullets, while phosphorylated,
inactive, and active components are marked with a lowercase p, a lowercase i, or a
lowercase a, respectively. Single-headed arrows describe a directed influence, while
double-headed arrows depict a mutual interaction between the connected species.
Inhibition and activation are shown with red dashed and green solid arrows, respec-
tively, while blue dotted arrows mask a nondeterminable interaction type.
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In conclusion, our Monte Carlo simulations using modular response and
conservation analysis show that the sign of interaction (activation or inhibi-
tion) is in most cases already defined through the kinetic scheme of the
reaction network and does not require knowledge of the parameters. More
than 99% of the signs of the local response matrix could be identified
uniquely from the structure of the reaction network. That means, even
without knowing the reaction network in detail, the direction and sign of
information flow can often be determined.

5. Conclusion

Information flow is the important property of biochemical signaling
networks. It determines the effect of a stimulus on the readout of a network.
In this chapter, we presented a recipe to tackle this question on a computa-
tional and qualitative level. MRA serves as a handy instrument to gain an
insight to otherwise hidden network properties. In combination with
conservation analysis, we could show that a very high percentage of species
interactions could be determined solely from the topology of the network.
This method is applicable to molecular reaction systems where not all
parameters of kinetic laws are known, especially for large and very large
signaling networks.
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that are always zero, always positive, and always negative, respectively. The fourth
column of bars represents elements that change their sign over different samples.
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