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Frequency-Domain Response Analysis for Quantitative
Systems Pharmacology Models

Pascal Schulthess1, Teun M. Post1,2, James Yates 3* and Piet H. van der Graaf1,4

Drug dosing regimen can significantly impact drug effect and, thus, the success of treatments. Nevertheless, trial and error is
still the most commonly used method by conventional pharmacometric approaches to optimize dosing regimen. In this
tutorial, we utilize four distinct classes of quantitative systems pharmacology models to introduce frequency-domain
response analysis, a method widely used in electrical and control engineering that allows the analytical optimization of drug
treatment regimen from the dynamics of the model.
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Optimizing dose and dosing regimen is arguably the
most critical contribution of clinical pharmacologists to
drug development. Despite significant advancements,
rational and quantitative methodologies, inadequate
dose, and regimen selection remains a main contributor
to late-stage drug development attrition and the need for
postmarketing dose adjustments.1 Dosing regimen is typ-
ically defined as the schedule of doses of a therapeutic
agent per unit of time. The conventional pharmacoki-
netic/pharmacodynamic (PK/PD) approach is to define a
target efficacious concentration based on the two PD
parameters maximum drug effect (Emax) and half-
maximal effective concentration (EC50; drug potency)
and then a dose and dosing regimen based on the two
PK properties clearance and volume of distribution. It
has been suggested that even for drugs associated with
more complex PK/PD models, these principles remain
the same.1 However, recent advances in systems biology
suggest that there may be an alternative approach to
optimizing dosing regimen, which takes into account dos-
ing frequency as an independent determinant of PD
response. Mitchel et al.,2 for example, described that
growth of yeast (Saccharomyces cerevisiae) slows down
when challenged with 0.4 M KCl at a frequency of
0.125 min21 but not at higher or lower frequencies. The
authors were able to (retrospectively) rationalize this
“Achilles heel” frequency using a mitogen-activated pro-
tein kinase systems biology model. This suggests that
frequency of dosing should be investigated further for
modulating biological pathways and, therefore, pharma-
cological intervention.

That dosing frequency can significantly impact treat-
ment success is also nicely exemplified in the re-
emergence of metronomic chemotherapy in which lower
doses are administered more frequently.3–7 Multiple clini-
cal trials in adult and pediatric patients with cancer sug-
gest that such a treatment regimen could be an
interesting alternative.8 Even though there have been
some studies, especially in oncology, analyzing the impact

of different dosing schedules on treatment success,9–19 a
mathematically sound or even analytical method is still
lacking. Currently, pharmacometricians usually rely on
trial-and-error methods by brute-force simulations of only
a short list of possible regimens dictated by clinical prac-
tice to find the optimal regimen for their drug and model
rather than applying a more quantitative or even analytical
approach up front.

Quantitative systems pharmacology (QSP) models are
often described by ordinary differential equations in the
time domain because the inputs (e.g., the plasma concen-
tration of a drug or a schedule of drug administrations)
and the outputs (e.g., the effect of a drug) vary in time.
One fundamental aspect of these dynamic models is the
timescale(s) they act on. These timescales can span a
wide range, from drug-receptor binding processes that
happen within seconds to tumor growth over the course of
years. Similarly, perturbations to such systems span differ-
ent time scales as well and are influenced by dosing regi-
men and PKs. Engineers study how similar dynamic
system responds to such perturbations at various time
scales with frequency-domain response analysis (FdRA).20

Therefore, they are not interested in the temporal evolution
of an input signal but its harmonic content (i.e., frequency,
amplitude, and phase) and how it changes when passed
through a given system. The FdRA not only provides valu-
able insight into the dynamic behavior of a system but also
enables the identification of the systems mathematical
structure solely through observation of its responses to dif-
ferent inputs. This “black box” approach results in a so-
called transfer function that relates the inputs with the out-
puts, and allows the prediction of the response of the sys-
tem to arbitrary inputs. Experimentally, this “black box”
approach is carried out by perturbing the system at differ-
ent time scales and measuring the output. When the
probed system is linear and the input signal is sinusoidal
FdRA is straightforward. By using, for example, multiple
sound waves of different frequencies as input signals into
a telephone landline and observing the output at the
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receiving end one can determine that the system acts as a
low-pass filter by only passing low input frequencies while
filtering out high input frequencies. Although the genera-
tion of such sinusoidal signals is easy in an engineering
context, only advances in microfluidics research has
allowed system biologists to expose cells with similar oscil-
lating input signals.2,21–25 Systems pharmacology models,
however, usually describe the interaction between drugs
and a biological system.26 Thus, the inputs are usually
drug administrations that do not allow for systematic prob-
ing of the system by applying a wide range of dosing regi-
men. Nevertheless, in order to predict which dosing
regimen results in the desired system output, FdRA can
be used.

With the emergence of personalized medicine in com-

bination with the increasing prevalence of personal wear-

able computing devices we see a potential for uncommon

but more optimal dosing regimen. Thus, the application

of FdRA might help to find these optimal dosing

schedules.
In this tutorial, we aim to introduce FdRA to a systems

pharmacology audience by first deriving the mathematics

behind it step-by-step with a simple example. Subsequently,

we apply FdRA to four distinct and commonly used PD

models (indirect response, autoregulation, precursor-pool,

and moderator-mediated feedback models), and compare

the frequency response of the linearized versions of these

models with their original nonlinear version that was excited

by a one-compartment PK model with repetitive i.v. bolus

administration.

A step-by-step derivation of FdRA
Every real-valued continuous mathematical model that is

described by ordinary differential equations can be sub-

ject to FdRA. The analytical derivation of the models’ fre-

quency response follows the workflow given in Figure 1.

Because a stable steady-state is a prerequisite for

FdRA,20 any given mathematical model first needs to

undergo steady-state analysis.27 For the steady-state

analysis here, we assume that the steady-state input is

constant (i.e., not time-varying). If the model has at least

one stable steady-state, its linearity needs to be deter-

mined. A linear model can readily be rewritten in state-

space representation, whereas a model that is either

nonlinear with respect to the states or the input must

first be linearized around a stable steady-state, which

would be the one observed in patients or animals. From

the state-space representation of the (linearized) model,

the transfer function can be calculated. In a last step,

the transfer function is used to visualize the frequency

response with the help of a so-called Bode plot28 that

related the amplitude ratio of inputs and outputs to their

frequency. How a Bode plot of a nonlinear system can

be determined numerically is shown as well in this

tutorial.

An indirect response model as an illustrative example
To showcase the application of FdRA to QSP models, we

select a simple indirect response model (Figure 2a). It

describes a compound that acts on the urinary bladder

sphincter via stimulatory a2-adrenergic receptor, which

was given to rats while a voiding volume as a physiologi-

cal biomarker was followed (case study 3 in ref. 29). We

denote the voiding volume with x and the plasma con-

centration of the compound with c. The drug function

now is:

E cð Þ516
Emaxc

EC501c
(1)

wherein Emax and EC50 represent the maximal effect and

the potency of the stimulatory or inhibitory drug function,

respectively. The differential equation describing the drug

response with direct stimulation of the production is:

dx
dt

5kin 11
Emaxc

EC501c

� �
2koutx5f x ; cð Þ (2)

where kin and kout denote production and loss rates of the

response. Here, we should note that, unless otherwise

specified, x , y , and c are depending on time, but to

improve readability we omit tð Þ from the notation. According

to the flowchart for FdRA in Figure 1, this model needs to

undergo steady-state analysis in the next step.

Steady-state analysis
As mentioned earlier, we assume the steady-state input to

be constant (i.e., cSS50). Thus, from f xSS; cSSð Þ50 the

steady-state is results in:

xSS5
kin

kout

Start
Steady-state

analysis stable? linear?

Linearisation

State-space Transfer
function

Bode
plot

Stop

Figure 1 Frequency-domain response analysis (FdRA) workflow. The sequence of steps needed to perform FdRA for a given mathe-
matical model.
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because

@f x; cð Þ
@x

���
x5xSS
c5cSS

52kout < 0

the steady-state xSS; cSSð Þ is stable. Even though the model

is linear in x , the drug function (1) has a nonlinearity in c.

Thus, the next step is to linearize the model around the

steady-state.

Linearization
State-space representations and, therefore, transfer func-

tions can only be derived from linear and time-invariant

models (i.e., models that fulfil the conditions of additivity

and homogeneity; see Supplementary Text). Equation 2

violates both of these conditions. This violation can be

overcome if the nonlinearity in c is linearized by:

@f x ; cð Þ
@c

���
x5xSS
c5cSS

5
Emax

EC50
kin :

This leads to the linearized model:

dx
dt

5
Emax

EC50
kinc2koutx : (3a)

State-space representation
The state-space representation, which is just a way to rep-
resent linear time-invariant differential equations, is now
simply given by defining an output:

y � x : (3b)

FdRA determines the input/output behavior of a system in
response to sinusoidal inputs. Thus, we demonstrate the
response of the linearized system (Eq. 3a) to
two sinusoidal inputs c tð Þ5sin xi tð Þ with different frequen-
cies fi 5

xi

2p in Figure 2b. In the left panel, an input with fre-
quency f15 1

24
h21 leads to an output (i.e., response of the

system) with a four times higher amplitude as compared
to the unit amplitude of the input. In the right panel of
Figure 2b, an input with period f254 h21 into the same
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Figure 2 Indirect response model. (a) Structures of four model flavors (1 5 stimulation of production, 2 5 stimulation of loss,
3 5 inhibition of production, and 4 5 inhibition of loss) of the indirect response model. Blue arrows represent stimulation or inhibition.
(b) Time course simulations of linearized model flavor 1. Input sinusoid (black) of two different frequencies ( 1

24 h21 and 4 h21) and
response (pink) are shown. (c) Frequency response of all four linearized model flavors is given by the amplitude ratio for various fre-
quencies of the input sinusoids. Schematically, low-frequency gain, cutoff frequency, threshold frequency, and roll-off are depicted.
(d) Time course stimulations of model flavor 1. Plasma concentration as derived from pharmacokinetic (PK) model (black) for two
drugs with different elimination rates ( 1

24 h21 and 4 h21) and the response (pink) are shown. (e) Frequency response of all four PK-
driven model flavors is given by the amplitude ratio for various elimination rates. Note that model flavor 1 (stimulation of production)
results in the same frequency response as model flavor 3 (inhibition of production). Model parameters used in all simulations:
kin51 ml � h21, kout51 h21, Emax51, and EC5050:25 lM:
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model results in lower output amplitude. Thus, low input fre-

quencies amplify the response of the system, whereas high

input frequencies attenuate them.

Transfer function
The transfer function now describes the input/output behav-

ior of the system and can be determined from the Laplace

transformation of Eq. 3a:

sX sð Þ5 Emax

EC50
kinC sð Þ2koutX sð Þ

Y sð Þ5X sð Þ

as

G sð Þ � Y sð Þ
C sð Þ5

Emax

EC50

kin

s1kout
: (4)

The transfer function can now be used to collect the

responses of the linearized system (Eq. 3a) to inputs over

a wide range of frequencies with the help of a Bode plot

(Figure 2c).

Bode plot
Traditionally, a Bode plot is used in electrical and control

engineering to study, for example, the transmission behav-

ior of feedback control systems. Here, we slightly modify

the Bode plot to make it more accessible to a nonengineer-

ing audience. On the x-axis, we plot the frequencies on a

logarithmic scale. On the y-axis, we plot the magnitude

M xð Þ5 jG ixð Þj

in base 10 logarithmic scale. This magnitude is equal to the

ratio of the output and the input amplitude (cf. Supplemen-

tary Text). Setting kin51 ml � h21, kout51 h21, Emax51,

and EC5050:25 lM in (3), the Bode plot displays a con-

stant amplitude ratio of 4 for low frequencies and a linear

decrease for high frequencies. Here, it should be noted that

all amplitude ratios above 1 entail an amplification of the

input, whereas amplitude ratios below 1 represent an atten-

uation of the input amplitude. Engineers furthermore denote

several characteristics of the frequency response,25 as

visualized in Figure 2c:

• Low-frequency gain: the degree to which constant or

slowly varying inputs (e.g., long times between two drug

administrations) are attenuated or amplified. Ingalls30

found that the low-frequency gain describes the (local,

steady-state) sensitivity of the system to the input and

that it reflects the steady-state response to a step input

(e.g., one i.v. bolus dose).
• Cut-off frequency: The frequency below which the system

allows all components of the input to pass to the output.

Alternatively, to put it differently, frequencies lower than

the cutoff frequency does not perturb the system. It is the

frequency for which the amplitude ratio is 1ffiffi
2
p of the low-

frequency gain. The cutoff frequency indicates the fastest

time scale the system can act on.

• Threshold frequency: The frequency for which the response

of the system switches from amplification to attenuation.
• Peak frequency: The frequency for which the amplitude

ratio is maximal. For frequency response shapes, as in
Figure 2c, the peak frequency is equal to the low-

frequency gain.
• Roll-off: The slope of the frequency response above the

cutoff frequency once it reaches a straight line is called
relative degree of the system, and is a measure of how

quickly the output responds to changes in the input. The

larger the relative degree, the slower is the response.

For the frequency response of the indirect response

model in Figure 2c, the low-frequency gain is 4, the thresh-

old frequency is 0:63 h21, whereas the relative degree of
the system follows to 1. The cutoff frequency fc can be cal-

culated from Eq. 4 and

jG ixð Þj5 Emax

EC50

��� kin

ix1kout

���5 Emax

EC50

kinffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21k2

out

q 5
4ffiffiffi
2
p

to

fc5
x
2p

5
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
8

E2
max

EC2
50

k2
in2k2

out

s
5

1
2p
� 0:16 h21:

In Figure 2a and Figure 2c, we furthermore include three

additional model flavors (2 5 inhibition of production,
3 5 stimulation of loss, and 4 5 inhibition of loss). Even though

all these models are described by different differential equa-

tions and different drug functions, they all exhibit the same fre-

quency response (i.e., the lines overlap in Figure 2c).

Numerical FdRA
Because most QSP models are (highly) nonlinear, we con-

trast the analytical with a numerical approach. For that, we

assume a simple one-compartment PK model with i.v.
bolus drug administration:

dc
dt

52kec (5)

wherein c and ke are the plasma concentration and the elimi-

nation rate constant of the drug, respectively. The PK model
in Eq. 5 is then combined with Eq. 2, i.e. the nonlinear repre-

sentation of the indirect response model. The time courses

for two different elimination rates of 1
24 h21 and 4 h21 are

displayed in Figure 2d. It should be noted that for all nonlin-

ear models, drug administration occurs at four times the

inverse elimination rate (i.e., if ke54 h21 the drug is adminis-
tered every hour). This is done to prevent accumulation in

the plasma and so achieves pseudo steady-state. As with

the sinusoid-driven linearized model, we observe higher
response amplitude as compared to the plasma concentra-

tion amplitude for the lower elimination rate, whereas the

higher elimination rate results in amplitude attenuation.
Performing these simulations for a whole range of elimi-

nation rate constants and measuring the plasma concentra-

tion and response amplitudes once the system reached
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steady-state oscillations leads to the Bode plot shown in

Figure 2e. In comparison with the analytical frequency

response given in Figure 2c, the numerical frequency

response leads to the same shape for the amplitude ratio.

For low elimination rates, the amplitude ratio is nearly con-

stant and decreases linearly for higher elimination rates. It

can furthermore be seen that the four model flavors lead to

three different frequency response behaviors. Although the

frequency responses of the two interventions on the produc-

tion are equal, those on the loss differ substantially. Over

the whole range of elimination rates, but mainly for the

smaller elimination rates, inhibiting the loss leads to the

largest differences between plasma concentration and

response amplitude, whereas stimulation of the loss leads

to lowest differences. Whereas the low-frequency gain of

the analytical and numerical frequency responses differ sub-

stantially (except for the model flavor that describes inhibi-

tion of loss), the cutoff frequencies and relative degrees are

comparable (Table 1). For the analytical frequency

response, the threshold frequency is 0:62 h21, whereas it is

close to 1 h21 for the numerical frequency response.

DISCUSSION

The frequency responses of the indirect response models

(Figure 2c,e) take the form of a low-pass filter because for

low frequencies the amplitude ratio is constant (i.e., those

frequencies are passed to the output). High frequencies are

attenuated. A direct effect model on the other hand results

in constant frequency response over the whole range of

input frequencies or elimination rates (Supplementary

Figure S1). Thus, although all inputs are directly passed to

the output for a direct effect model, certain input frequen-
cies lead to an output amplitude modulation by the indirect

response model.
Comparing the analytical and numerical frequency

responses we conclude that the nonlinear systems amplify
less frequent drug interventions less strongly than the linear-
ized system. In all other frequency response characteristics,
the differences are marginal. Another main difference

between analytical and numerical FdRA is the inability of the
analytical FdRA to resolve the different drug functions. The
different model flavors only differ in the sign and location of
the drug function E cð Þ, which is also the sole nonlinearity in
the models. Thus, following linearization all model flavors are
equal, which obviously leads to equal frequency responses.

If the response of a certain treatment is desired to show

high fluctuations, FdRA would, therefore, advise using a
low frequency dosing schedule. On the other hand, if the
response should follow the plasma concentration as closely
as possible, FdRA would suggest a drug dosing frequency
of 1 h21, whereas a minimal response amplitude would
require a maximal dosing frequency.

In the following, we will apply FdRA to four distinct model

structures commonly used as PD models,29 and compare
the analytical approach with the numerical derivation of the
frequency response.

Autoregulation models
The four autoregulation model flavors (Figure 3a) describe
autostimulatory and auto-inhibitory processes with either
stimulatory or inhibitory drug action on the loss. They can
be described by:

dx
dt

5kinu xð Þ2koutxE cð Þ (6)

Table 1 Characteristics of the frequency responses

Model

Low-

frequency

gain

Peak

frequency

[h21]

Cutoff

frequency

[h21]

Threshold

frequency [h21]

Relative

degree

type Flavor Anal. Num. Anal. Num. Anal. Num. Anal. Num. Anal. Num.

Indirect response Stimulate production 4 2.86 4 2.86 0.16 0.22 0.62 1.09 1 0.97

Inhibit production 4 2.86 4 2.86 0.16 0.22 0.62 1.09 1 0.97

Stimulate loss 4 2.22 4 2.22 0.16 0.31 0.62 0.93 1 0.97

inhibit loss 4 3.99 4 3.99 0.16 0.13 0.62 1.25 1 0.98

Autoregulation Stimulation and positive

feedback

4 2.21 4 2.21 0.12 0.23 0.46 0.68 1 0.99

Inhibition and positive

feedback

4 4 4 4 0.12 0.1 0.46 0.96 1 0.98

Stimulation and negative

feedback

0.97 0.57 0.97 0.57 0.26 0.48 – – 1 0.95

Inhibition and negative

feedback

0.97 0.89 0.97 0.89 0.26 0.24 – – 1 0.95

Precursor-pool Stimulation 0 0 0.16 0.25 – – 0.07, 0.38 0.10, 0.39 1 0.29

Inhibition 0 0 0.16 0.15 – – 0.07, 0.38 0.05, 0.85 1 0.37

Moderator-mediated

feedback

Stimulation 2 1.34 0.1 0.02 0.04 0.0098 0.63 1.09 1 0.98

Inhibition 2 1.55 0.1 0.02 0.04 0.0096 0.63 1.2 1 0.98

Double moderator-

mediated feedback

Stimulation 2 1.34 0.06 0.01 0.42 0.0056 0.62 1.04 1 0.97

Inhibition 2 1.55 0.06 0.01 0.42 0.0053 0.62 1.17 1 0.97

For all models, their flavors, and both analytical (Anal.) and numerical (Num.) frequency-domain response analyses, the low-frequency gain, peak frequency,

cutoff frequency, threshold frequency, and relative degree are listed. For the numerical frequency response, the low-frequency gain was calculated at an elimi-

nation rate of 2p � 1025 h21.
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wherein kin, u, and kout are the production rate, the feed-
back term, and the loss rate, respectively. The drug func-
tion is again given by Eq. 1. For positive and negative
feedback, we defined the feedback term to be u1 xð Þ5 x

K 1x

and u2 xð Þ5 K
K 1x

, respectively. Herein, K could be, for
example, a dissociation constant.

Analytical FdRA
For positive parameters and if we require the steady-states

to be positive as well, both unforced (cSS50) model flavors

with positive feedback have xSS5 kin

kout
2K as stable steady-

state, whereas those unforced model flavors with negative

feedback have xSS52 1
2 K 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K 2

4 1 kinK
kout

q
as stable steady-

state.
Thus, the linearized model in state-space representation

for the positive feedback flavors can be derived as:

dx
dt

5kout
koutK

kin
21

� �
x1

Emax

EC50
2kin1koutKð Þc

y � x

(7a)

whereas the one for the two-model flavors with negative
feedback is:

dx
dt

5 2kout2
4kinK

K1jð Þ2

 !
x1

Emax

EC50

kout

2
K2jð Þc

y � x

(7b)

wherein j5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K 4kin

kout
1K

� �r
and with defining x as the output.

Exemplarily, the response of Eq. 7a with kin51 ml � h21,

kout51 h21, K50:25 lM, Emax51, and EC5050:25 lM,

and to two sine waves with the frequencies 1
24

h21 and

4 h21 is shown in Figure 3b. Although the smaller fre-

quency leads to a fourfold amplification of the input signal,

the larger frequency results in attenuation of the input

amplitude.
The transfer functions of the linearized systems in Eq. 7

are now:

G1 sð Þ52G3 sð Þ5 Emax

EC50

kinkoutK2k 2
in

kins1kinkout2k2
outK

(8a)

and

G2 sð Þ52G4 sð Þ5 Emax

EC50

kout

2
K2j

s1kout1
4kinK

K1jð Þ2
(8b)
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Figure 3 Autoregulation model. (a) Structures of four model flavors (1 5 stimulation with positive feedback, 2 5 stimulation with negative
feedback, 3 5 inhibition with positive feedback, and 4 5 inhibition with negative feedback). Blue arrows represent stimulation or inhibi-
tion. (b) Time course simulations of linearized model flavor 1. Input sinusoid (black) of two different frequencies ( 1

24 h21 and 4 h21)
and response (pink) are shown. (c) Frequency response of all four linearized model flavors is given by the amplitude ratio for various
frequencies of the input sinusoids. Note that model flavors 1 and 3 as well as 2 and 4 results in the same frequency response.
(d) Time course stimulations of model flavor 1. Plasma concentration as derived from pharmacokinetic (PK) model (black) for two
drugs with different elimination rates ( 1

24 h21 and 4 h21) and the response (pink) are shown. (e) Frequency response of all four PK-
driven model flavors is given by the amplitude ratio for various elimination rates. Model parameters used in all simulations:
kin51 ml � h21, kout51 h21, K 50:25 lM, Emax51, and EC5050:25 lM:
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where G1, G2, G3, and G4 represent the models with stimu-

lation and positive feedback, with inhibition and positive

feedback, with stimulation and negative feedback, and with

inhibition and negative feedback, respectively. The transfer

functions in Eq. 8 are shown in Figure 3c over a range of

input frequencies. Both the positive and negative feedback

model flavors are constant for small frequencies and

decrease linearly for large frequencies. Although the posi-

tive feedback model flavors possess a threshold frequency

of 0:46 h21, the negative feedback model flavors always

attenuates the input independent of frequency. Thus, the

low-frequency gain of the negative feedback model flavors

is less than one. Furthermore, the cutoff frequencies of all

model flavors are similar (Table 1).

Numerical FdRA
All four flavors of the autoregulation model (Eq. 6) are

now excited with the one-compartment i.v. bolus PK

model given in Eq. 5. For two elimination rate constants

of 1
24 h21 and 4 h21, the time courses of the plasma concen-

tration and the response of the model flavor with stimulatory

drug action and positive feedback are shown in Figure 3d.

We observe that the smaller elimination rate results in

higher response amplitude as compared to the plasma

concentration amplitude. On the contrary, the higher elimi-

nation rate leads after a transient phase of �10 h to

smaller response amplitude.
Over a range of elimination rates, the frequency response

of all four model flavors is given in Figure 3e. All amplitude

ratios are constant for small elimination rates and decrease

linearly for higher elimination rates. In contrast with the ana-

lytical frequency response of Figure 3c, all four model fla-

vors result in distinct curves. Nevertheless, only the model

flavors with positive feedback possess a threshold frequency,

whereas those with negative feedback attenuate the plasma

concentration over the whole range of elimination rates. Fur-

thermore, for both negative and positive feedback models,

we observe that those with inhibitory drug action lead to a

larger response amplitude relative to the stimulatory drug

functions. Although there are some differences in the fre-

quency response characteristics for the model flavors with

stimulatory drug function, those of the model flavors with

inhibitory drug function are comparable between the analyti-

cal and the numerical frequency response (Table 1).
Similar to the indirect response models, the frequency

response of the autoregulation models takes the form of a

low-pass filter. However, the model flavors with negative

feedback never cross the amplification/attenuation thresh-

old. The analytical frequency response is able to distinguish

between positive and negative feedback because the differ-

ence between the positive and negative feedback terms not

only lead to distinct steady-states but consequently also to

distinct linear models. Its inability to resolve the stimulatory

and inhibitory drug functions is based on the same issue

already discussed for the indirect response models. Never-

theless, it is reassuring that, when compared to the numeri-

cal frequency response, the overall behavior is comparable,

especially for the inhibitory drug function.

Precursor-pool model
To describe tolerance and rebound, precursor-pool models

have long been used in pharmacology.31 Case study 16 in

ref. 29, for example, describes the antilipolytic response of

a group of healthy volunteers to an adenosine receptor

agonist.32 In general, a precursor-pool model (Figure 4a)

can be described by:

dx

dt
5

dx1

dt

dx2

dt

2
6664

3
77755

kin2koutx1E cð Þ

koutx1E cð Þ2koutx2

2
4

3
55f x ; cð Þ (9)

wherein kin and kout represent the turnover and loss rate,

respectively. Here we should note that multidimensional vari-

ables are denoted in bold (e.g., xÞ. The drug function is

again given by Eq. 1. Stimulatory and inhibitory drug action

now gives rise to two flavors of the precursor-pool model.

Analytical FdRA
Because Eq. 9 now is a two-dimensional system, we need to

use matrix notation for FdRA. As mentioned earlier, for the

steady-state analysis we assume that the input at steady-

state is constant (cSS50). Thus, from f xSS; cSSð Þ50 the

steady-state for both flavors is x1;SS5x2;SS5 kin

kout
. The stability

of the steady-state can now be judged from the signs of the

eigenvalues of the Jacobian matrix at steady-state:

J xx 5
@f x ; cð Þ
@x

���
x5xSS
c5cSS

5

2kout 0

kout 2kout

2
4

3
5 : (10)

Given positive rate constants, both eigenvalues k15k252

kout of Jxx have negative real parts. Thus, the steady-state

is stable. In order to linearize Eq. 9 around its stable

steady-states, the Jacobian matrix with respect to the

model input c needs to be calculated as well to:

J xc5
@f x ; cð Þ
@c

���
x5xSS
c5cSS

56
Emax

EC50

2kin

kin

2
4

3
5 : (11)

With Eqs. 10 and 11, the linearized system can now be

given in state-space representation as:

dx

dt
5J xx x1J xc c

y5J yx x1Jyc c

(12)

with Jyx 5 0 1½ � and Jyc50.
In Figure 4b, we show the output time courses of the lin-

earized system (Eq. 12) for sinusoidal inputs of three differ-

ent frequencies (f15 1
24 h21, f25 1

6 h21, and f354 h21).

Although we observe almost equal response amplitude as

compared to the plasma concentration for the smallest fre-

quency, the response amplitude is amplified for the interme-

diate frequency. For the largest frequency, however, the

response amplitude is strongly attenuated.
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For multidimensional systems, the transfer function defi-

nition in Eq. 4 needs to be rewritten in matrix form as:

G sð Þ5J yc sI2J xxð Þ21J xc1Jyc : (13)

Herein, I denotes an identity matrix of the same dimensions

as Jxx . Thus, the transfer functions for the two model fla-

vors follow to:

G1 sð Þ52G2 sð Þ5 Emax

EC50

kins
s212kouts1k 2

out
(14)

where G1 and G2 represent the model flavors with stimulatory

and inhibitory drug action, respectively. Both model flavors

now lead to the same bell-shaped Bode plot (Figure 4c). For

small frequencies, we observe an increase, whereas large fre-

quencies lead to a linear decrease. This means that the Bode

plot peaks at a frequency of 0:16 h21. This frequency

response furthermore contains two threshold frequencies at

0:07 h21 and 0:38 h21 (Table 1). Thus, only within this fre-

quency window does the plasma concentration amplitude get

amplified by the system. Beyond that window, the response

amplitude is lower than the plasma concentration amplitude.

Numerical FdRA
Exciting the nonlinear precursor-pool model with inhibitory

drug action (Eq. 9) with a one-compartment i.v. bolus PK

given in Eq. 5 for three different elimination rates results in
the time courses shown in Figure 4d. For a small elimina-
tion rate of 1

720 h21, we can observe a response amplitude

that is lower than the plasma concentration amplitude. An
intermediate elimination rate of 1

6 h21 leads to higher
response amplitude, as compared to the one of the plasma
concentration amplitude. A large elimination rate of 4 h21

again leads to a smaller response amplitude hinting that
also the nonlinear precursor-pool model with drug PK input
displays a bell-shaped frequency response (cf. Figure 4c).

In addition, indeed, calculating the amplitude ratio for both
model flavors over a range of elimination rates confirms the
bell shape (Figure 4e). For small elimination rates, we can
observe an increase, whereas long elimination rates lead

to a linear decrease in amplitude ratio. In contrast to the
analytical frequency response, the numerical frequency
response displays a plateau for intermediate elimination

rates. Furthermore, we can observe than both model fla-
vors result in distinct frequency responses with the model
flavor with inhibitory drug action displaying input amplifica-
tion for intermediate half-lives. The model flavor with

stimulatory drug action barely crosses the attenuation/
amplification threshold. Although the frequency response
characteristics are comparable between the analytical and

numerical methods, the relative degree is significantly lower
for the nonlinear models (Table 1 and comparing the
curves in Figure 4c,e).
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Figure 4 Precursor-pool model. (a) Structures of two model flavors (1 5 stimulation, and 2 5 inhibition). Blue arrows represent stimula-
tion or inhibition. (b) Time course simulations of linearized model flavor 1. Input sinusoid (black) of three different frequencies ( 1

24 h21,
1
6 h21, and 4 h21) and response (pink) are shown. (c) Frequency response of both linearized model flavors is given by the amplitude
ratio for various frequencies of the input sinusoids. Note that both model flavors result in the same frequency response. (d) Time
course stimulations of model flavor 2. Plasma concentration as derived from pharmacokinetic (PK) model (black) for three drugs with
different elimination rates ( 1

720 h21, 1
6 h21, and 4 h21) and the response (pink) are shown. (e) Frequency response of both PK-driven

model flavors is given by the amplitude ratio for various elimination rates. Model parameters used in all simulations: kin51 ml � h21,
kout51 h21, Emax51, and EC5050:25 lM:
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The frequency response of the precursor-pool model

gives rise to a new bell-like shape, the band-pass filter.

Although small and large frequencies result in an attenua-

tion of the output, a small band of intermediate periods (i.e.,

passband) results in output amplification. The reason why

the precursor-pool model does not act as a low-pass but a

band-pass filter can be derived from its mathematical struc-

ture (cf. Supplementary Text). Although the overall shape

of the numerical frequency response is comparable with the

analytical frequency response, it is interesting to observe

that the passband of the numerical frequency response cov-

ers a much wider range of elimination rates. Within the

passband the amplitude ratio of the nonlinear system seems

to oscillate with ever decreasing amplitudes. We assume

that the systems’ nonlinearities are responsible for this

behavior.
The presence of a distinct peak frequency can have a

significant impact on finding a suitable drug dosing sched-

ule, as dosing at the peak frequency can lead to the most

severe side effects or the most desirable effect with respect

to all other drug dosing frequencies. Furthermore, for a limi-

tation of response fluctuations both low and high drug dos-

ing frequencies are feasible.

Moderator-mediated feedback model
Case study 1829,33 takes the form of a moderator-mediated

feedback model (Figure 5a). Here, nicotinic acid inhibits

the production of nonesterified free fatty acids given by x1

in plasma. The production of free fatty acids stimulates the

production of an endogenous modulator x2, which itself

inhibits the turnover rate of the response. In general, such

a system can be modeled as:

dx

dt
5

kin

x2
E cð Þ2koutx1

ktolx12ktolx2

2
64

3
75 (15)

Therein, kin, kout, ktol, and E cð Þ are the turnover rate, the

fractional turnover rate, the development of tolerance to the

drug effect, and the drug function defined in Eq. 1. The

presence of a stimulatory as well as an inhibitory drug func-

tion E cð Þ gives rise to two model flavors.

Analytical FdRA
If we again assume the steady-state input to be zero (cSS50)

and require the steady-state as well as all model parameters

to be positive, the steady-state for both model flavors is

x1;SS5x2;SS5

ffiffiffiffiffiffi
kin

kout

q
. The Jacobian matrix with respect to the

model states evaluated at the steady-state follows to:

J xx 5

2kout 2kout

ktol 2ktol

2
4

3
5 : (16)

Substituting kin51 mL � h21, kout51 h21, ktol50:25 h21,

Emax51, and EC5050:25 lM results in eigenvalues with

negative real parts. Hence, the steady-state is stable (for

the given parameters). Thus, we linearize system (Eq. 15)

to arrive at the following linear models in state-space

representation:

dx

dt
5

2kout 2kout

ktol 2ktol

2
64

3
75x6

Emax

EC50

ffiffiffiffiffiffiffiffiffiffiffi
kinkout

p

0

2
664

3
775c

y � 1 0½ �x

: (17)

The time courses of the linearized model with stimulatory
drug action for sinusoidal inputs with three different fre-

quencies f15 1
168 h21, f25 1

12 h21, and f354 h21 are dis-
played in Figure 5b. Although the smallest frequency

results in a slight amplification of the plasma concentration

by the system, the input with an intermediate frequency is
strongly amplified. The input with the largest frequency

leads to a significant attenuation.
From Eqs. 13 and 17, the transfer functions of the two

model flavors are:

G1 sð Þ52G2 sð Þ5 Emax

EC50

ffiffiffiffiffiffiffiffiffiffiffi
kinkout

p s1ktol

s21 kout1ktolð Þs12koutktol
: (18)

Here, we denoted G1 to be the transfer function of the
model flavor with stimulatory drug action and G2 represents

the model with inhibitory drug action. The Bode plot for
both model flavors is displayed in Figure 5c. We observe

that both model flavors give rise to equal frequency

responses, which shows a constant amplitude ratio for
small frequencies after which it peaks at a frequency of

0:1 h21. For larger frequencies, the amplitude ratio declines
linearly with a slope of 21. The cutoff frequency is

0:04 h21. Furthermore, the plasma concentration amplitude
is amplified for all frequencies larger than 0:63 h21.

Numerical FdRA
In order to compare the analytical frequency response of

the linearized model with the nonlinear model, we again
select a one-compartment PK model with repeated i.v. bolus

dosing defined in Eq. 5 to drive the nonlinear moderator-
mediated feedback model with stimulatory drug function.

For three distinct elimination rates of 1
1440 h21, 1

12 h21, and
4 h21, the time courses of the plasma concentration and

the response are shown in Figure 5d. Similar to the time
courses of the linearized model we observe that slow and

intermediate elimination rates lead to an amplification of the

plasma concentration amplitude, whereas fast elimination
rates result in its attenuation. The smallest elimination rate

displays lower response amplitude as the intermediate elimi-
nation rate suggesting a peak in the frequency response. In

addition, indeed, numerically calculating the Bode plot of
both model flavors (Figure 5e) results in a plateau-like peak

with its maximum at 0:02 h21. For both model flavors, this
plateau lies in the amplification range of the amplitude ratio.

For smaller elimination rates, we observe a constant ampli-
tude ratio at low-frequency gains of 1:34 and 1:55 for the

two flavors. For larger elimination rates, a linear decrease
with a slope of 20:98 is present. The threshold frequency

for both flavors is close to 0:01 (Table 1). Last, the inhibitory
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drug function results in an overall higher amplitude ratio as

compared to the stimulatory drug function.
The frequency response of the moderator-mediate

feedback model resembles a combination of a low-pass

and a band-pass filter because it peaks for intermediate

frequencies/elimination rates and converges to a constant

amplitude ratio for small frequencies/elimination rates. In

the numerically derived frequency response, we can

observe similar oscillations of decreasing amplitudes as

with the precursor-pool model. Overall, the analytical fre-

quency response as derived from the linearized model is a

good approximation of the numerically simulated frequency

response of the nonlinear model. This comparability is also

confirmed by the similar frequency response characteristics

(Table 1).

Double moderator-mediated feedback model
Case study 19 in ref. 29 looks at the effect of an anonymized

test compound upon the gene expression of specific target.

Although using a stimulatory drug effect, the dynamics of fold

mRNA induction x1 was modeled by a moderator-mediated

feedback model with two moderator compartments x2 and

x3. In general, such a model can be described by:

dx

dt
5

kin

x3
E cð Þ2koutx1

ktol x12x2ð Þ

ktol x22x3ð Þ

2
6666664

3
7777775

(19)

wherein E cð Þ is the stimulatory/inhibitory drug effect given

in (1), kin the turnover rate, kout the fractional turnover rate

of x1, and ktol the fractional turnover rate for x2 and x3.

The presence of a stimulatory as well as an inhibitory drug

function E cð Þ gives rise to two model flavors depicted in

Figure 6a.

Analytical FdRA
For the unforced system (i.e., without the presence of

a drug and assuming that all parameters and steady-

states are positive), the steady-state for both model flavors

is x1;SS5x2;SS5x3;SS5

ffiffiffiffiffiffi
kin

kout

q
: To study the stability of this
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Figure 5 Moderator-mediated feedback model. (a) Structures of two model flavors (1 5 stimulation with negative feedback and
2 5 inhibition with negative feedback). Green, red, and blue arrows represent stimulation, inhibition, and stimulation or inhibition,
respectively. (b) Time course simulations of linearized model flavor 1. Input sinusoid (black) of three different frequencies ( 1

168 h21,
1
12 h21, and 4 h21) and response (pink) are shown. (c) Frequency response of both linearized model flavors is given by the amplitude
ratio for various frequencies of the input sinusoids. Note that all model flavors result in the same frequency response. (d) Time course
stimulations of model flavor 1. Plasma concentrations as derived from pharmacokinetic (PK) models (black) for three drugs three differ-
ent elimination rates ( 1

1440 h21, 1
12 h21, and 4 h21) and the response (pink) are shown. (e) Frequency response of both PK-driven

model flavors is given by the amplitude ratio for various elimination rates. Model parameters used in all simulations: kin51 ml � h21,
kout51 h21, ktol50:25 h21, Emax51, and EC5050:25 lM:

Frequency-domain response analysis for QSP models
Schulthess et al.

120

CPT: Pharmacometrics & Systems Pharmacology



steady-state we calculate the Jacobian matrix with respect
to the model states x of Eq. 19 to:

J xx 5

2kout 0 2kout

ktol 2ktol 0

0 ktol 2ktol

2
66664

3
77775 (20)

and evaluate it at the steady-state. For kin51 ml � h21,

kout51 h21, ktol50:25 h21, Emax51, and EC5050:25 lM,
all eigenvalues have negative real parts. Thus, the found
steady-state is stable and can be used to linearize and
express Eq. 19 in state-space representation as:

dx

dt
5

2kout 0 2kout

ktol 2ktol 0

0 ktol 2ktol

2
6666664

3
7777775

x6
Emax

EC50

ffiffiffiffiffiffiffiffiffiffiffi
kinkout
p

0

0

2
6666664

3
7777775

c

y � 1 0 0½ �x

(21)

In Figure 6b, we display the time courses of the sinusoi-
dal plasma concentration for f15 1

168 h21, f25 1
12 h21, and

f354 h21 and the corresponding responses of the model.
The slow frequency input leads to a slightly amplified
response of the model, whereas the intermediate input fre-
quency amplifies the plasma concentration amplitude fourfold.
For the fastest input frequency, the plasma concentration
amplitude is strongly attenuated.

With Eq. 13, the transfer function of this model is now
calculated as:

G1 sð Þ52G2 sð Þ5 Emax

EC50

ffiffiffiffiffiffiffiffiffiffiffi
kinkout

p s212ktols1k2
tol

s31 kout12ktolð Þs21 2koutktol1k 2
tol

� 	
s12koutk 2

tol

(22)

The stimulatory drug effect is given by G1, whereas the
transfer function of the inhibitory drug effect is G2. The
Bode plot of both model flavors is displayed in Figure 6c.
Therein, we observe a constant amplitude ratio for small
frequencies after which the cutoff frequency is given by
0:42 h21. The amplitude ratio peaks at 0:06 h21, after
which it decreases linearly with a slope of 21. For
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12 h21, and 4 h21) and the response (pink) are

shown. (e) Frequency response of both PK-driven model flavors is given by the amplitude ratio for various drug elimination rates. Model
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frequencies larger than 0:62 h21, the amplitude ratio

switches from amplification to attenuation.

Numerical FdRA
The moderator-mediated feedback model with two modera-

tors and a stimulatory drug function is now excited with a

one-compartment i.v. bolus PK model (Eq. 5) to study the

comparability between analytical and numerical FdRA. In

Figure 6d, the time courses for three elimination rates of
1

1440 h21, 1
12 h21, and 4 h21 are shown. The slow and inter-

mediate elimination rates result in an amplification of the

plasma concentration amplitude, whereas the fastest elimi-

nation rate leads to an attenuation of the plasma concentra-

tion. The peak/plateau character of the frequency response

is hinted at by the higher response amplitude of the

intermediate elimination rate as compared to the slow elimi-

nation rate. The Bode plot confirms this observation

(Figure 6e). For the slow elimination rate, we can observe

an almost constant amplitude ratio of 1:34 and 1:55 for

both model flavors. After peaking at 0:01 h21, the ampli-

tude ratio reaches a plateau and declines linearly with a

slope of 20:97. The threshold frequencies for both model

flavors are close together. Last, the amplitude ratio of the

model flavor with inhibitory drug effect is always larger than

the one of the model flavor with stimulatory drug function.
Adding a second moderator compartment does not sig-

nificantly change the overall shape of the frequency

response that harbors a peak in the amplitude ratio for

intermediate input frequencies/elimination rate. Even the

frequency response characteristics are similar (Table 1).

Overall, the analytical frequency response describes the

response behavior of the nonlinear model well.

SUMMARY AND OUTLOOK

In this tutorial, we introduced a frequency-domain response

analysis to a pharmacometrics audience. We exemplarily

applied FdRA to 14 distinct PDs models of four classes

(indirect response, autoregulation, precursor-pool, and

moderator-mediated feedback), which gave rise to low-pass

and band-pass frequency responses. Other frequency

response shapes, such as high-pass and band-stop, are

possible as well (Figure 7a). However, these would require

the existence of the Jyc matrix (Figure 7b and

Supplementary Text) that directly connects plasma con-

centration and response. We could imagine that such a

model structure would be possible if the overall response to

a drug would arise from combining one of the models we

presented here (Figure 7b gray box) with a direct effect

model.
To conclude, we showed that FdRA might be a helpful

analytical method to not only gain insight into the dynamics

of various systems but also suggests the appropriate

drug dosing regimen. Additionally, in drug discovery, FdRA

allows to optimize drug properties, such as elimination rate

or half-life in order to tailor the PK profile to the desired PD

response. Furthermore, the comparison of analytical FdRA

of the linearized models with numerical FdRA of the nonlin-

ear models driven by a one-compartment i.v. bolus PK

model let us to believe that analytical FdRA, even though it

uses drug administration in unrealistic sinusoidal inputs,

provides a quick and easy way to determine which dosing

frequencies have an attenuating or amplifying effect on the

response of the system.
Thus, FdRA aids in the optimization of the drug dosing

regimen for the desired purpose during drug development

and for drug use optimization.
In the end, we should note that FdRA can not only apply

to single-input-single-output systems, as presented in this

tutorial, but also to multiple-input-multiple-output systems.

In a pharmacological context, this not only allows the dose

regimen optimization for combination treatments but also

the analysis of multiple responses to a single or combina-

tion treatment.
In a supplementary R script, we exemplify how both ana-

lytical and numerical FdRA can be implemented.
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