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Abstract. Thorough exploration of alternative dosing frequencies is often not performed
in conventional pharmacometrics approaches. Quantitative systems pharmacology (QSP) can
provide novel insights into optimal dosing regimen and drug behaviors which could add a
new dimension to the design of novel treatments. However, methods for such an approach
are currently lacking. Recently, we illustrated the utility of frequency-domain response
analysis (FdRA), an analytical method used in control engineering, using several generic
pharmacokinetic-pharmacodynamic case studies. While FdRA is not applicable to models
harboring ever increasing variables such as those describing tumor growth, studying such
models in the frequency domain provides valuable insight into optimal dosing frequencies.
Through the analysis of three distinct tumor growth models (cell cycle-specific, metronomic,
and acquired resistance), we demonstrate the application of a simulation-based analysis in
the frequency domain to optimize cancer treatments. We study the response of tumor growth
to dosing frequencies while simultaneously examining treatment safety, and found for all
three models that above a certain dosing frequency, tumor size is insensitive to an increase in
dosing frequency, e.g., for the cell cycle-specific model, one dose per 3 days, and an hourly
dose yield the same reduction of tumor size to 3% of the initial size after 1 year of treatment.
Additionally, we explore the effect of drug elimination rate changes on the tumor growth
response. In summary, we show that the frequency-domain view of three models of tumor
growth dynamics can help in optimizing drug dosing regimen to improve treatment success.

KEY WORDS: cancer; dosing frequency optimization; frequency-domain response analysis; quantitative
systems pharmacology.

INTRODUCTION

In clinical pharmacology, treatment regimen are usually
defined by drug dose, dosing interval, and treatment duration.
Because the success of drug interventions heavily depends on
drug administration schedules, the high rate of late-stage
attrition in clinical development can be attributed partly to
sub-optimal dosing regimen selection [1, 2]. Often, dose and
dosing schedule are determined through pharmacokinetic and

pharmacodynamic (PKPD) model simulations [3]. In quanti-
tative systems pharmacology (QSP), such PKPD models are
combined with mechanistic systems biology and/or disease
models [4]. Such mechanistic models have long been used to
describe and predict various aspects in oncology [5–7], from
the underlying biological mechanisms [8–10] to tumor growth
[11, 12]. While QSP is increasingly utilized in anti-cancer drug
discovery and development [13, 14], only a few examples exist
where it has been applied to optimize drug dosing and
scheduling to predict tumor responses, efficacy, and toxicity
[15, 16]. Control theory methods, but almost exclusively
optimal control theory, have been used to optimize dosing
regimen [17, 18]; however, the range of analyzed regimen has
been limited. Primarily, optimal control theory served as a
method to optimize dose [19–21]. Fister and Panetta [22], for
example, used optimal control theory on a model of cell
cycle-specific bone marrow growth to determine effective
administrations of a chemotherapeutic agent while maximiz-
ing bone marrow mass and the drug dose over the treatment
interval.

However, there has been little systematic effort in
determining the influence of dosing frequency on treatment
success by using PKPD models. To approach this gap, we
recently published a tutorial for pharmacologists on
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frequency-domain response analysis (FdRA), an analytical
method commonly used in systems and control engineering
[23]. QSP models relate inputs such as the plasma concentra-
tion of a drug or a schedule of drug administrations to outputs
such as the effect of a drug. Because these key variables
typically vary in time, QSP models are often based on
differential equations. The time scales on which they act can
differ significantly, from drug-receptor binding happening
within seconds to tumor growth over the course of years.
Similarly, disturbances of dynamic biological systems, such as
drug interventions, can span multiple time scales as well.
FdRA provides a framework for analyzing how such distur-
bances on various time scales affect dynamic systems by
focusing on the change of the harmonic content (i.e.,
frequency, amplitude, and phase) of an input signal when it
is passed to the output, rather than its temporal evolution.
Additionally, in combination with (preclinical) high-
throughput dose-exposure-response experimentation, FdRA
allows for the identification of a system’s structure describing,
e.g., the dynamic connection between dose and response
without requiring prior biological or pharmacological knowl-
edge [24, 25]. FdRA, however, requires a model to be linear
or at least linearizable around a stable steady state. Conse-
quently, FdRA is not applicable to models that do not possess
a stable steady state because they, for example, contain
monotonically increasing variables as present in tumor
growth models. Nevertheless, we demonstrated earlier that
non-linear models and their linearization’s lead to compara-
ble frequency responses [23].

Here, we present a simulation study that is heavily
inspired by FdRA in that it shifts the focus away from the
traditionally used time domain towards the frequency domain
with the aim to find the frequency response behavior of three
models of tumor growth to chemotherapeutic treatment, and
so to suggest optimal dosing regimen.

The three selected models capture essential aspects of
chemotherapy, namely the cell cycle specificity and the anti-
angiogenic effects as well as the development of resistance to
chemotherapeutic agents (Fig. 1). Cell cycle-specific chemother-
apy has been well-studied with the help of mathematical models
[26]. Dibrov et al., for example, studied the frequency depen-
dence of cell cycle-dependent chemotherapy with the help of
(optimal) control theory methods already more than 40 years
ago [27, 28]. While they included a drug concentration
dependence in their model, pharmacokinetics (PK) is not fully
incorporated. Similarly, Agur et al. [29] modeled cell cycle
kinetics in normal and tumor tissue to optimize pulsatile dosing
without the inclusion of PK. And lastly, also Bernard et al. [30]
studied the impact of variations of tumor cell kinetics on anti-
cancer chronotherapy without the addition of a PK model.
Here, we use a cell cycle-specific model (CCSM) that divides
human tumor cells into proliferating cells in G1, S, G2, or M
phase and quiescent cells in G0 phase of the cell cycle [31]. It is,
furthermore, coupled to a two-compartmental PK model of
etoposide and a myelosuppression model to predict toxicities
[32]. Metronomic chemotherapy, and anti-angiogenesis as its
main mode of action, is well studied from a theoretical
perspective as well [33–36]. With the help of a mathematical
model, Mpekris et al., for example, found that metronomic
chemotherapy improves the vascular perfusion of tumor tissue
which resulted in improved drug delivery and higher tumor cell

kill rates [37]. The metronomic model (MM) used in this article
combines a PK model of temozolomide with a tumor growth
model that contains a description of the anti‐angiogenic effect,
and a model of myelosuppression [38]. The prevention of
resistance to anti-cancer therapies with the optimization of
dosing schedules has been excessively examined using mathe-
matical models [39–41]. Here, we analyze a murine PKPD
model of acquired resistance (ARM) of tumor cells in response
to erlotinib or gefitinib treatment [42].

We study the response of each of these three tumor
growth models to different dosing frequencies, the interplay
of PK and dosing regimen on treatment success, and the
optimal treatment modality to maximize tumor reduction
while limiting toxicities. Not surprisingly, we find that PK
significantly impacts the success of treatment; however, the
frequency-domain view identifies previously unknown devia-
tions from conventional dosing regimen. Additionally, we
suggest modified drug elimination rates for next-generation
compounds that would lead to optimal tumor reduction with
acceptable toxicity.

Thus, we show that analyzing QSP models in the
frequency domain not only provides insights into the dynam-
ics of tumor growth and their response to repetitive treat-
ments, but also allows to detect optimal dosing regimen for
given drug behaviors.

MATERIALS AND METHODS

All models were implemented as described in the
respective publications and verified by reproducing the
published simulations. Here, it should also be noted that
between-subject variability in the PK parameters was not
considered.

Cell Cycle-Specific Model

The cell cycle‐specific model (CCSM) by Zhu et al. [18]
combines a two‐compartmental PK model of etoposide in
humans, a tumor growth model, and a myelosuppression
model (Fig. 1 left). Etoposide is administered into the central
compartment (AC) and can distribute into a peripheral
compartment (AP). The tumor growth model divides tumor
cells into two compartments—proliferating cells in G1, S, G2,
or M phase (P) and quiescent cells in G0 phase of the cell
cycle (Q). It is assumed that quiescent cells are not affected
by etoposide. The myelosuppression model describes the
maturation of proliferating stem and progenitor cells in the
bone marrow (NP) into circulating neutrophils (NC).
Etoposide stimulates the degradation of proliferating tumor
cells and inhibits regeneration of stem cells. The model
equations and parameters are given in the Supplementary
Text. The effect of drug concentration on cell killing
(parameter k1) was not reported by Zhu et al. [18], and
therefore, set to k1 = 0.8 d−1 based on a cell cycle-specific
model of breast cancer data by Panetta and Adam [43].

Metronomic Model

The metronomic model (MM) describes the effect of
temozolomide on tumor growth as well as its anti-angiogenic
effect [44] (Fig. 1 middle). A myelosuppression model of
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temozolomide was first developed by Panetta et al. [45], and
coupled to the tumor growth model by Houy and Grand [38].
Temozolomide is administered orally as represented by the
absorption compartment (AA) after which it distributes into
the central compartment (AC). The effect of temozolomide
on tumor size (C) and angiogenesis (A) is mediated by two
effect compartments (EC and EA). The maturation of
proliferating stem and progenitor cells in the bone marrow
(NP) gives rise to neutrophils in circulation (NC). Temozolo-
mide promotes tumor cell degradation and anti-angiogenesis
while inhibiting stem and progenitor cell proliferation. With
the originally reported parameters, the main findings of
Faivre et al. [44] could not be reproduced. We, therefore,
digitized their key figures and estimated a new parameter set
(Supplementary Figure S1). The model equations and the
original as well as the newly estimated parameters are
reported in the Supplementary Text.

Acquired Resistance Model

Eigenmann et al. [42] recently developed a murine tumor
growth inhibition model that describes the killing of tumor
cells in response to erlotinib or gefitinib treatment and the
formation of resistant cells (Fig. 1 right). An EGFR inhibitor,
erlotinib or gefitinib, is administered orally into an absorption
compartment (AA) and distributes into the central compart-
ment (AC). In response to drug treatment, sensitive cells (S)
undergo several stages of damage (T1 to T3) and are either
killed or converted to resistant cells (R). Eigenmann et al.,
however, also assume that a threshold of drug plasma
concentration exists above which the drugs are affecting the
resistant cells. This threshold concentration is derived from
an in vitro threshold by correcting for fraction unbound in
plasma [46, 47]. The model equations, as well as the
parameter sets for erlotinib and gefitinib in mouse, are given
in the Supplementary Text.

Frequency-Domain Response Analysis

Recently, FdRA was introduced to a pharmacometrics
audience [23]. FdRA analytically determines how the fre-
quency of an input modulates the output behavior of a linear
dynamic system. Following a steady-state analysis, a non-

linear model, such as those usually present in QSP, is
linearized around a stable steady state after which the
frequency response can be determined. Because tumor
growth models usually grow indefinitely, no stable steady
state can be found other than a trivial steady state at the
origin. Thus, a linearization is not possible, and FdRA cannot
be employed. Therefore, we performed a simulation study
that mimics FdRA numerically by simulating the time courses
of tumor growth, absolute neutrophil count (ANC), and the
amplitude ratios between tumor and PK for a large range of
dosing frequencies. Afterwards, we plotted tumor growth,
ANC, and amplitude ratios after a certain treatment duration
over the frequency of dose administration. Here, it should be
noted that FdRA only allows for symmetric dosing regimen
(e.g., daily, weekly) which means that irregular dosing
regimen such as administration on five consecutive days once
per month or different dose amounts such as loading doses
cannot be visualized in the frequency response graphs.
Additionally, we performed an analytical analysis of the
metronomic model in order to obtain explicit and approxi-
mate solutions of the differential equations with which we
could substantiate the numerical findings (Supplementary
Text).

Doses

Throughout this article, we maintain constant total drug
exposure to avoid that more frequent dosing results in a
greater drug exposure, and thus to make results across
different dosing regimen comparable. Conventionally,
etoposide and temozolomide are administered on five con-
secutive days once per month at single doses of 100 mg m−2

and 200 mg m−2, respectively. Thus, a 70-kg patient with a
body surface area of 1.8 m2 will receive 10.8 g etoposide or
21.6 g temozolomide per year. Erlotinib and gefitinib are
administered daily at doses of 100 mg kg−1 and 150 mg kg−1,
respectively. Mice with a body weight of 25 g, thus, receive
7.58 mg erlotinib or 11.42 mg gefitinib per month. The dose
administered at each treatment is adjusted to keep the total
dose, and so total exposure to a drug, constant. A daily
administration of etoposide would, for example, calculate to a
single dose of 29.6 mg whereas a dose of 207.7 mg would be
administered in a weekly schedule.

Fig. 1. Model structures. For the three models (CCSM, MM, and ARM), the model structures are shown. Green and red
arrows denote stimulation and inhibition, respectively. Model variables are abbreviated as the following: D is the drug dose;
AA, AC, AP are the drug concentrations in the absorption, central, and peripheral compartments, respectively; P and Q
represent proliferating and quiescent cancer cells; EC and EA are the effect compartment for cancer cells and the anti-
angiogenic effect, respectively; C and A are the cancer cells and the anti-angiogenic effect, respectively; NP and NC

represent proliferating and circulating neutrophils, respectively; S represents sensitive cells; T1 to T3 are cells in different
stages of damage; R is the resistant cells
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Safety Determination

The cell cycle-specific and the metronomic model both
contain a myelosuppression model that allows the determi-
nation of treatment safety in terms of ANC. No such model
exists relating adverse events to epidermal growth factor
receptor (EGFR) inhibition. We normalize ANC levels to
ANC before treatment and determine two safety measures.
By measuring minimum ANC, we assume that ANC levels
below 6% represent neutropenia [33]. Furthermore, we
determine the ability of neutrophil levels to recover between
two doses by measuring maximum ANC levels just before the
administration of the next dose.

Software

All simulation results were obtained with R 3.5.0. For the
parameter estimation of the metronomic model, MATLAB
R2018a was used. Mathematica 11.3.0 was consulted for the
analytical analysis of the metronomic model.

RESULTS

Tumor Development

For all three models (CCSM, MM, and ARM), the time-
resolved change in tumor tissue in response to three repetitive
dosing schemes (one dose everymonth, week, and day) over the
course of 1 year is shown in Fig. 2. All three dosing schemes
applied to the cell cycle-specific model lead to a reduction of the
number of tumor cells after 1 year (Fig. 2 top left). Daily and
weekly doses of etoposide result in a tumor cell count reduction
of 99.7% and 99.4% after 1 year, respectively, while a monthly
dose reduces the number of tumor cells by 71.5% as compared
to tumor cell mass prior to treatment. Additionally, ANC

fluctuations change in response to dosing frequency (Supple-
mentary Figure S2). A monthly schedule brings ANC close to
levels observed in neutropenia which, however, recover again to
39.6% above pre-treatment ANC levels before the next dose is
administered. Daily and weekly administrations result in a
sustained reduction of ANC levels to 42.2% of the initial ANC
level with only slight or no fluctuations.

For the metronomic model, a daily administration schedule
results in a large increase in tumor mass while the monthly dosing
schedule increases tumor mass by 1.2% after 1 year (Fig. 2 top
right). Only the administration of one dose of per week leads to a
slight decrease in tumormass with amaximumdecrease by 14.3%
after 7 days of treatment, and a decreased by 11%after 1 year.An
analytical analysis of this model, furthermore, confirms these
findings (Supplementary Text and Supplementary Figure S3).
There, we either solve the differential equations analytically or
approximate their solutions which results in a very good
correspondence. For a daily dosing regimen, we analytically find
that tumor mass increases indefinitely, while it stays nearly
constant in a monthly regimen. Administering temozolomide
every 5 days displays a significant decrease in tumor mass. Lastly,
an increased dosing frequency also reduces the fluctuations and
mean ANC levels with a daily dose administration leading to
ANC levels of less than 6% after 22 days whereas the monthly
administration scheme almost allows for full recovery to pre-
treatment ANC levels (Supplementary Figure S2). For the
originally reported parameters, the metronomic model does lead
to more pronounced reduction of tumor mass for low-frequency
administration schedules (Supplementary Figure S4).

Shortly after the start of erlotinib treatment to the acquired
resistance model, tumor volume decreases for all dosing
frequencies (Fig. 2 bottom left). Low-frequency dosing, how-
ever, develops sustained oscillations around the pre-treatment
tumor volume with larger amplitudes observed for monthly as
compared to weekly treatments. Thus, while an erlotinib dose
initially leads to tumor reduction, tumor volume increases prior
to the next dose. Only daily administration of erlotinib results in
a sustained tumor volume increase after 1 year. Gefitinib
administration results in tumor volume increase irrespective of
dosing frequency with the largest increase observed for daily
interventions (Fig. 2 bottom right). Weekly administrations
fluctuate between 2407.4 and 2714.5%. The monthly adminis-
tration schedule results in tumor volume fluctuations between
489.8 and 1873.0%. We, furthermore, observe that already after
1 month of erlotinib treatment, all sensitive cells have become
resistant (Supplementary Figure S5). For gefitinib treatment,
however, this conversion happens more gradually. A monthly
dosing regimen displays large fluctuations in the fraction of
resistant cells.

Tumor Growth Response to Dosing Frequency Changes

To assess the impact of dosing frequency, we calculate
the tumor properties for all three models (CCSM, MM, and
ARM) after 1, 2, and 3 years of repetitive drug treatment at
increasing dosing frequencies (Fig. 3). Each model is excited
with drug doses at increasing frequencies after which the
mean amount of tumor tissue of the last two dose adminis-
trations is divided by the amount of tumor tissue prior to
treatment and expressed in percent. For CCSM and MM, the
safety of each dosing regimen is, furthermore, determined by

Fig. 2. Tumor development over time at different dosing frequencies.
For the three models (CCSM, MM, and ARM), tumor cell count
(CCSM), tumor mass (MM), and tumor volume (ARM) with respect
to initial tumor cell count/mass/volume before treatment in logarith-
mic percent are plotted over 1 year of repetitive dose administration
every month (light green), week (medium green), and day (dark
green)
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calculating ANC as a percental relation between the neutro-
phil count after 1, 2, and 3 years to the neutrophil count at the
beginning of treatment. A 6% ANC nadir is used as a lower
threshold for safety [33]. It has been reported that a rash was
the most common adverse event when patients with non-
small cell lung cancer were treated with 150 mg erlotinib [48]
or with 250 mg gefitinib per day [49]. Hence, it is assumed
that our use of constant exposure dosing regimen for the
acquired resistance model is safe for the majority of animals
as well. Stimulating the cell cycle-specific model with
prolonged high-frequency etoposide administration results in
a reduction of tumor tissue by 99.7% after 1 year, and
complete eradication after 3 years (Fig. 3 top left). Infrequent
treatment at, for example, one dose every 3 months on the
other hand initially leads to a tumor increase by 44.6% after
1 year, and an increase of 524.1% after 3 years. Interestingly,
the reduction of tumor cell count did not change between one
dose every 3 days and six doses per day. Administering less
than one dose every 36 days results in an ANC below 6% and
thus, unsafe treatment whereas more frequent dosing is
predicted to be a safe treatment regimen (Supplementary
Figure S6). On the other hand, when looking at neutrophils’
ability to recover as safety determinant by measuring peak
ANC levels in response to dosing frequencies, we observe
that dosing more frequently than once every 10 days dropped
maximum pre-dose ANC levels below 50% of their levels
before treatment.

Administering temozolomide to the metronomic model
less frequently than one dose per week leads to a slight
increase of tumor mass between 0.2 and 3.3% (Fig. 3 top
right). More than two doses per week largely increase tumor
mass already after 1 year. This is also the only regimen where
a difference of tumor mass over time compared to no

treatment can be observed. A dosing regimen between one
and three doses per week leads to tumor reduction with the
maximum tumor reduction of 94.6% after 1 year observed at
one dose every 4 days. A dosing frequency above one dose
per 3 days introduces ANC trough levels of 6% or less. The
ANC peak describing the ability of neutrophils to recover is
at 101% for low-frequency dosing schemes such as one dose
every half a year, drops below 50% for one dose every
22 days, and reaches neutropenia levels (< 6%) when the
dosing frequency is higher than one dose every 3 days
(Supplementary Figure S6). With the exact and approximated
analytical solutions of the model, we find that for dosing
frequencies higher than 0.32 doses per day, the tumor mass
approaches its tumor size limit of 1 kg. For lower dosing
frequencies (less than 0.14 doses per day), it can be shown
that the tumor mass hardly deviates from its pre-treatment
value (Supplementary Text).

The model of acquired resistance mainly responds with an
increase in tumor volume irrespective of dosing frequency or
drug (Fig. 3 bottom). Only erlotinib dosing at frequencies
between one dose every 7 and one dose every 17 days results in
a maximal tumor reduction by 7.8% after 3 years. Increasing the
dosing frequency above two erlotinib doses per day or one
gefitinib dose every 4 days plateaus the tumor volume, i.e.,
administering gefitinib once every 3 days and six times per day
leads to a similar tumor response. Furthermore, only in these
plateaued dosing frequency regimes a slight difference in tumor
volume after 1 and 3 years is observed. Administering gefitinib
less frequently than once every 4 days decreases the tumor
volume with a minimum at one dose every 27 days when
measured after 3 years after which tumor volume increases again.

Tumor Growth Response to Dosing Frequency and
Elimination Rate Changes

The interplay between dosing frequency and elimination
rate, and its effect on tumor growth is analyzed in Fig. 4. For all
three models (CCSM, MM, and ARM), the mean change in
tumor tissue after 3 years from its baseline value is calculated for a
range of dosing frequencies and two orders of elimination rate
magnitudes around the elimination rates of the used drugs. We,
furthermore, superimposed the therapeutic window, i.e., dosing
frequency and elimination rate combinations that lead to
treatments that not only reduce tumor tissue but are also predicted
to be safe. For CCSMandMM, treatments are assumed to be safe
if ANC levels stayed above 6% while treatments for ARM are
always predicted to be safe. The dosing frequency and elimination
rate combinations that result in themost pronounced reduction of
tumor tissue are highlighted with hollow circles.

In the case of the cell cycle-specific model, lower
elimination rates and higher dosing frequencies are more
beneficial to tumor reduction (Fig. 4 top left). The therapeutic
window is scattered around the original elimination rate of
etoposide for mid- to high-frequency dose administrations.
The optimal treatment regimen that leads to the largest tumor
reduction within the therapeutic window is found at 6 doses
per day for an etoposide-like drug with an elimination rate of
10 L day−1 (rather than 27.36 L day−1).

The metronomic model continues to display the very
narrow dosing frequency band that leads to tumor reduction
for different elimination rates whereas higher dosing

Fig. 3. Tumor response to dosing frequency changes. For the three
models (CCSM, MM, and ARM), tumor cell count (CCSM), tumor
mass (MM), and tumor volume (ARM) with respect to initial tumor
cell count/mass/volume before treatment in logarithmic percent are
plotted over the frequency of dose administrations after one (light
blue), two (medium blue), and three (dark blue) years of treatment.
Safe treatments (ANC > 6%) are represented by solid lines, unsafe
treatments by dashed lines
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frequencies and elimination rates result in strong increases in
tumor response (Fig. 4 top right). Low-frequency dosing and
small elimination rates fall short of altering tumor mass. The
optimal treatment modalities are found for bi-monthly dose
administration with a temozolomide-like drug with an elim-
ination rate of 10 h−1 (rather than 0.39 h−1). Toxicities are also
less pronounced compared to the conventional treatment
modalities (Supplementary Figure S7).

Only a reduction of the elimination rate results in tumor
reduction in the acquired resistance model (Fig. 4 bottom).
As a result, the therapeutic window is also confined to smaller
elimination rates. Multiple combinations of smaller elimina-
tion rates and dosing frequencies lead to tumor eradication by
an erlotinib-like compound. Administering a gefitinib-like
compound with an elimination rate of 0.13 day−1 (rather than
3.87 day−1) once per week minimizes tumor volume.

When comparing tumor development over the course of
4 months of the conventional treatment regimen with the
above-identified optimal treatment modalities, we reassur-
ingly observe that the optimal combinations of dosing
frequency and elimination rate lead to faster tumor reduction
or even eradication (Supplementary Figure S8).

Amplitude Response to Dosing Frequency Changes

In order to assess the relationship between the fluctuations in
tumor tissue (output) to fluctuation in drug plasma concentration
(input), we calculate the input/output dosing frequency response
(Fig. 5). For that, we determine the ratio of the amplitudes of the
tumor and the drug plasma concentration during the last year of a

3-year treatment for a range of dosing frequencies. Thus, an
amplitude ratio of 0.1 means that the plasma concentration
fluctuations are ten times as high as the tumor fluctuations.
Irrespective ofmodel, we observe that the amplitude ratios always
stayed below 1. In other words, in all models, the drug plasma
concentration fluctuations are always attenuated by themodel and
lead to smaller fluctuations in the tumor.

For the cell cycle-specific model, the input/output response
stays within one order of magnitude with a larger amplitude
ratio for low-frequency dosing (Fig. 5 top left). When determin-
ing the response of ANC fluctuations to plasma fluctuations, we
observe a peak in the amplitude ratio when dosing once every
29 days, and a constant amplitude ratio above dosing frequen-
cies of one dose every 3 days (Supplementary Figure S9).

Because the tumormass in themetronomic model does not
fluctuate, the input/output response is zero for all dosing
frequencies (Fig. 5 top right). However, the input/output
response can be determined when using ANC levels as output
which shows a steep drop of the amplitude ratio over 18 orders
of magnitude up until a dosing frequency of one dose per day
when ANC levels become zero (Supplementary Figure S9).

In the case of the acquired resistance model, we observe
an increasing amplitude ratio when administering erlotinib,
and a decreasing amplitude ratio when treating with gefitinib
for increasing dosing frequencies (Fig. 5 bottom).

DISCUSSION

By numerically studying three models of tumor growth
and treatment effects that capture essential aspects of

Fig. 4. Tumor response to dosing frequency and elimination rate changes. For the three models
(CCSM, MM, and ARM), tumor cell count (CCSM), tumor mass (MM), and tumor volume
(ARM) with respect to initial tumor cell count/mass/volume before treatment in percent are plotted
over the frequency of dose administrations and elimination rates. The tumor response is depicted
along a blue to white to red color gradient. Not applicable simulations are given in gray. The
therapeutic window is highlighted with black dots while the optimal combination of dosing
frequency and elimination rate is denoted as a hollow circle. The elimination rates are given in L
day−1 (CCSM), h−1 (MM), and day−1 (ARM)
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chemotherapy, we unraveled their response behavior to
chemotherapeutic treatment in the frequency domain.

For the cell cycle-specific model, we found that even though
more frequent dose administration is favorable to tumor
reduction, it also results in a sustained reduction of ANC levels
while less frequent etoposide administration allows for a strong
ANC recovery. This trade-off between efficacy and safety was
also observed by Andersen and Mackey [50] who investigated
resonance in periodic chemotherapy for acute myelogenous
leukemia, and found that this type of intervention is unlikely to
be efficacious because tumor cells seem to be favored over bone
marrow cells in terms of depletion and regrowth rate. Through
adaptation of PK, we furthermore found an etoposide-like drug
with a reduced elimination would rather accelerate tumor
reduction while still residing within the therapeutic window. This
suggests that a mid-frequency dosing regimen might be optimal
when describing tumor growth with a cell cycle-specific model.

The metronomic model, although specifically developed
for frequent low-dose drug administrations, is not able to
confirm this treatment regimen but on the contrary suggests
that infrequent treatments should be preferred in terms of
tumor reduction and toxicity. While maximum tumor reduc-
tion might be achieved for four temozolomide administrations
per week, ANC levels below 10% are not a tolerable adverse
effect. However, a temozolomide-like therapeutic agent with
an increased elimination rate that is administered only every
2 months results in fast tumor reduction with only mild
toxicities. In line with the here presented conclusions, two
studies of anti-angiogenic chemotherapy, however without
PK, investigated the treatment frequency and concluded that
the efficacy of metronomic therapy depends the interplay of
the vascular contribution to tumor growth and the anti-
angiogenic effect of the therapy [51, 52]. This confirms the
importance and impact of dosing frequency on the success
of metronomic chemotherapy. We, furthermore, showed
how explicit or approximate analytical analysis can deepen
the insight gained from a model, especially with respect to
dosing frequencies.

As expected, in the model of acquired resistance, the
resistant cells quickly dominate the sensitive cells, irrespective of
drug or species. However, the subtle differences in tumor
development and resistant cell behavior can be explained by
the different model-inherent drug plasma concentration thresh-
olds above which the drugs also affect resistant cells (Supple-
mentary Table S3). Additionally, drug-specific PK parameters
are responsible for the different responses of the model to
dosing frequency changes. Therefore, reduction of the elimina-
tion rates by two orders of magnitude is the only option to
combat resistance and achieve tumor reduction while the dosing
frequency seems to have only a minor impact.

By looking at the input/output behavior of all three
models through the amplitude ratio between tumor cell
count/mass/volume and drug plasma concentration, we found
that the amplitude ratios of all models stay below 1, which
means that the tumor growth models attenuate plasma
fluctuations before they are passed to the tumor response.
In other words, the amount of tumor tissue always fluctuates
less than the amount of drug in plasma. Furthermore, because
all amplitude ratios stay within one order of magnitude, we
reason that dosing frequency does not significantly alter the
relationship between plasma concentration and tumor
fluctuations.

Here, it should also be noted that FdRA only allows for
periodic and symmetric dosing regimen where the dose for each
treatment as well as the dose administration interval is the same.
That this might not always lead to the optimal treatment
modalities was recently highlighted by Chmielecki et al. [53].
They used an evolutionary model of non-small cell lung cancer
to predict that high-dose pulses combined with continuous low-
dose tyrosine kinase inhibitors such as gefitinib or erlotinib
delay the emergence of resistance. This prediction was, how-
ever, later refuted in a phase 1 clinical study that found no
improvement of progression free survival or prevention of the
emergence of resistance [54]. Nevertheless, non-symmetric
dosing regimen were also found to optimize treatment outcome
in patients with metastatic breast cancer or non-small-cell lung
cancer. Traina et al. [55, 56] studied the reduction of consecutive
oral capecitabine treatment days from 14 to 7 followed by a 7-
day rest period based on simulations of a Norton-Simon growth
kinetic model. Similarly, in one of the few studies combining PK
with the development of acquired resistance, Foo et al. [57]
concluded that administration of erlotinib in high-dose pulses
with low-dose continuous therapy minimized the development
of resistance.

The importance of optimizing dosing regimen also
extends into immunotherapy or targeted anti-cancer therapy,
such as EGFR inhibition. Sachs et al. [58] exemplified that for
targeted therapeutics such as monoclonal antibodies or
immunotherapies that might not exhibit dose-limiting toxic-
ities, conventional maximum tolerated dose derived first-in-
human dosing needs an alternative dosing strategy such as
biologically efficacious dose. More specifically, a PKPD
coupled tumor uptake model for immunocytokine-based
cancer immunotherapy predicted that dose-dense administra-
tion schedules improve intratumoral drug uptake [59]. For
brain tumors, however, it was found that lapatinib should be
administered on a continuous daily schedule [60] while the
time intervals between PCV (Procarbazine, CCNU, and
Vincristine) chemotherapy cycles should be increased [61].

Fig. 5. Amplitude response of the tumor to dosing frequency. For the
three models (CCSM, MM, and ARM), the amplitude ratio between
tumor fluctuations and drug plasma concentration fluctuations is
plotted over the frequency of dose administrations
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CONCLUSION

With the increased interest in dosing regimen optimiza-
tion, it becomes apparent that each drug and each disease
exhibits its own optimal treatment modality, and we believe
that FdRA, and the numerical analysis of models in the
frequency domain as presented in this article, can provide a
helpful tool to approach this challenge. Hence, all three
models analyzed in this article exhibit their own response
behavior to changes in dosing regimen or drug-specific
parameters. Nevertheless, we found that conventional treat-
ment modalities leave considerable room for improvement.
Thus, in order to guarantee the best possible treatment
outcome, special care should be taken in tailoring the PK
profiles to the desired PD response. To that end, extending
FdRA by considering between-subject variability would allow
dosing frequency optimization even on the population level.
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