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Abstract

Motivation: A highly interlinked network of transcription factors (TFs) orchestrates the context-

dependent expression of human genes. ChIP-chip experiments that interrogate the binding of

particular TFs to genomic regions are used to reconstruct gene regulatory networks at genome-scale,

but are plagued by high false-positive rates. Meanwhile, a large body of knowledge on high-quality

regulatory interactions remains largely unexplored, as it is available only in natural language descrip-

tions scattered over millions of scientific publications. Such data are hard to extract and regulatory

data currently contain together only 503 regulatory relations between human TFs.

Results: We developed a text-mining-assisted workflow to systematically extract knowledge about

regulatory interactions between human TFs from the biological literature. We applied this workflow

to the entire Medline, which helped us to identify more than 45 000 sentences potentially describing

such relationships. We ranked these sentences by a machine-learning approach. The top-2500 sen-

tences contained �900 sentences that encompass relations already known in databases. By manu-

ally curating the remaining 1625 top-ranking sentences, we obtained more than 300 validated regu-

latory relationships that were not present in a regulatory database before. Full-text curation

allowed us to obtain detailed information on the strength of experimental evidences supporting a

relationship.

Conclusions: We were able to increase curated information about the human core transcriptional

network by >60% compared with the current content of regulatory databases. We observed im-

proved performance when using the network for disease gene prioritization compared with the

state-of-the-art.

Availability and implementation: Web-service is freely accessible at http://fastforward.sys-bio.net/.

Contact: leser@informatik.hu-berlin.de or nils.bluethgen@charite.de

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

Transcription factors (TFs) influence the rates by which their target

genes are transcribed by binding to regulatory DNA-segments, like

promoter or enhancer regions (Vaquerizas et al., 2009). In verte-

brates, the relationship between TFs and genes is complex: on one

hand, regulation of a specific gene often involves a variety of TFs,

acting in an independent, cooperative or competitive manner

(Lemon and Tjian, 2000). On the other hand, specific TFs often are

involved in the co-regulation of a multitude of target genes (Niehrs

and Pollet, 1999). Furthermore, TFs often also regulate other TFs.

These TF-TF relationships can be considered as the core of the full

human gene regulatory network (GRN) that orchestrates many cel-

lular processes by inducing or repressing genes which function is

specifically required for a given environment, for a certain cell type,

or at a certain point-in-time during development and cell differenti-

ation. Well-studied parts of this GRN are involved in wound healing

(Pratt et al., 2008) or in development (Davidson and Erwin, 2006),

and its dys-regulation is associated with many diseases (Vaquerizas

et al., 2009). It also has a particularly important role in cancer

(Dang, 2012; Jürchott et al., 2010), where a highly interconnected

regulatory core network mediates different aspects of the disease

(Stelniec-Klotz et al., 2012).

Biological research over the last decades has identified thousands

of individual regulatory interactions using specific, time-consuming

and laborious experiments. Proving a direct regulatory relationship

between a TF X and a gene Y typically comprises three individual

evidences: (E1) binding of X to a genomic location related to Y, (E2)

change in expression of Y upon activation of X, and (E3) abrogation

of regulation of Y upon removal or alteration of the binding site.

To-date, only some of these evidence types can be addressed in a

high-throughput manner. In particular, binding of TFs to genomic

DNA can be assessed on a genome-wide manner by chromatin

immuno-precipitation (ChIP) followed by sequencing, as for ex-

ample has been done on a large scale by the ENCODE project

(Consortium, 2012). However, binding of TFs alone does not neces-

sarily imply that downstream genes are regulated by the TF, and

genome-wide measurements tend to be rather noisy (Waldminghaus

and Skarstad, 2010). Consequently, classical low throughput, mech-

anistic studies are still considered the most reliable way of identify-

ing regulatory interactions (Furey, 2012), and our knowledge on the

topology of the regulatory networks still remains rather sketchy

(Röttger et al., 2012).

A central problem in compiling regulatory networks from high-

confidence low-throughput mechanistic studies is that these are scat-

tered over the large body of scientific literature. Accessing these data

in a systematic manner is difficult, as it requires finding articles

discussing such relationships, correctly identifying the involved gen-

es, and checking for each of the required evidences described earlier.

There are attempts to compile knowledge about GRNs in databases,

including the recently established TF Encyclopedia that is a commu-

nity-curated repository of information about different aspects of TFs

(Yusuf et al., 2012). TRANSFAC (Wingender, 2008), TRRD

(Kolchanov et al., 2002) and ORegAnno (Griffith et al., 2008) are

more established databases specifically focusing on regulatory rela-

tionships. However, these databases do not attempt to comprehen-

sively cover the core GRN, but rather focus on particular TFs or on

specific binding sites to compile binding site motifs. Notably, these

three databases (henceforth abbreviated as RegDBs) together con-

tain only 503 regulatory relationships between two human TFs for

an estimated number of at least 2000 TFs in the genome (Vaquerizas

et al., 2009). This situation is in stark contrast to e.g. Escherichia

coli, for which the RegulonDB (Collado-Vides et al., 2009; Gama-

Castro et al., 2008) contains 369 regulatory relationships between

the estimated 300 TFs in the genome (Vaquerizas et al., 2009).

To enlarge the body of experimentally asserted information

about the human core GRN, we set out to develop, apply and evalu-

ate a computer-assisted workflow for systematically finding and ex-

tracting experimental evidence for direct regulatory relationships

between human TFs from the biological literature. This workflow

comprises a state-of-the-art software to identify and normalize gene

names in text; a machine-learning based classifier to judge whether a

sentence in which a pair of genes co-occur describes a regulatory re-

lationship between these two genes; and an extensive phase of

human curation to check the truthfulness of the classifier’s output

on the sentence level and to provide an assessment of the strength of

supporting evidences described in the containing article. We applied

our workflow to all abstracts in PubMed. Altogether, we identified

more than 18 million pairs of genes co-occurring in the same sen-

tence. We automatically classified each of these sentences using a

classifier trained on a manually annotated gold standard corpus of

sentences describing regulatory relationships and inspected in detail

the top-2500 sentences mentioning a pair of human TFs. 35% of

those 2500 sentences report transcriptional interactions that were al-

ready covered by RegDBs. By manual curation, we found that 660

of the remaining 1625 sentences contained interesting information

about gene regulatory relations, and further 322 sentences described

co-operation or competition in transcription. Domain experts then

studied all 459 full-text publications covering the 660 sentences to

assess the trustfulness of the relationship with respect to the three

lines of independent evidence mentioned earlier. This lead to the

identification of 128 relationships supported by all three evidences,

compared with only 35 described in the RegDBs. 310 relationships

not previously covered by RegDBs were identified that are sup-

ported by at least one of the three evidences, compared with 503

described in the RegDBs. We performed an initial characterization

of the expanded network and found it to be considerably larger,

better connected and functionally different. It also led to improved

performance when used for disease gene prioritization in four differ-

ent RNA-Seq datasets.

2 Results and discussion

2.1 A workflow to extract the core regulatory network

between human TFs
Mammalian cells harbor a complex regulatory core network of TFs

regulating each other. We were interested in compiling this core net-

work in an as-complete-as-possible manner using two sources of

knowledge: The scientific literature and existing curated regulatory

databases. We were particularly interested in comparing the respect-

ive coverage of both approaches and the quality of the network ob-

tained by merging both sources.

To extract high-quality regulatory interactions from the litera-

ture, we first compiled a list of TFs by extending a hierarchical TF

classification (Wingender et al., 2013), and mapped the proteins to

their respective genes (see Supplementary File S1). We then applied

the workflow depicted in Figure 1. Mentions of TFs are identified in

all PubMed abstracts using the state-of-the-art gene name recogni-

tion tool GNAT (Hakenberg et al., 2011). GNAT was evaluated in

several critical evaluations (Lu et al., 2011; Morgan et al., 2008)

and achieves, according to these assessments, a precision of 82 %

and a recall of 82 % for abstracts and precision/recall values of

54/47% for full-text articles. We identified 76 596 sentences

Computer-assisted curation of a human regulatory core network 1259
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containing at least two human TFs in PubMed abstracts. Manual in-

spection of a sample of these sentences unveiled that large fractions

consists of false positives, i.e. they do not describe regulatory inter-

actions. Consequently, extracted sentences must be subjected to sub-

sequent manual curation. As doing so for 76 596 sentences is not

feasible, we followed a machine-learning based approach to priori-

tize sentences for manual curation. To this end, we trained a state-

of-the-art classification algorithm on the union GeneReg and

BioNLP’09, two freely available collections of manually annotated

sentences on gene regulations. Example annotations for sentences

containing regulatory events are shown in Figure 2A.

As for the second source of knowledge, we compiled a regulatory

dataset from three well-established gene regulatory databases,

namely TRANSFAC (Wingender, 2008), TRRD (Kolchanov et al.,

2002) and ORegAnno (Griffith et al., 2008). Of these, TRANSFAC

contained the largest amount of relationships between human TFs

(373), TRRD contained 183 and ORegAnno contained 22.

Surprisingly, we found that these databases had very little overlap,

with only one relation being in all three databases (see Fig. 2B). In

total, we could extract 503 unique regulatory interactions from

these RegDBs, which we consider as a surprisingly low number,

given that the human genome contains more than 2000 sequence-

specific TFs.

2.2 The workflow extracts functional regulatory

interactions from abstracts with high precision
Out of 23 140 530 Medline sentences, 3 449 157 contained at least

two proteins and 76 596 contained at least two human TFs. When

we applied our classifier to the latter set of sentences, it labeled

48 901 as positive (see Fig. 3A). We sorted the corresponding pairs

of TFs by classifier’s confidence on supporting sentences and further

curated abstracts and full articles (see next section) of the top-2500

pairs. We removed all pairs which were already contained in any of

the RegDBs. We then asked domain experts to manually curate the

remaining 1625 sentences (for detailed statistics see Supplementary

Table S1 and Supplementary File S2). Curators found 660 (40.6%)

sentences clearly indicating that the respective article describes a

regulatory interaction between human TFs. We also asked the cur-

ators to assess the types of experiment evidence provided in the re-

spective article (see Fig. 3C). Interestingly, much more publications

describe regulation of expression (E2) and mutational analysis (E3)

than binding of a TF (E1) (see Fig. 3B). Further 322 (19.8%) sen-

tences were found to describe cooperativity or competition between

the two TFs on a common target gene, thus hinting towards a func-

tional relationship.

Of all 1625 manually inspected sentences, 643 (39.6%) con-

tained no evidence that the article contains any information about a

regulatory relationship. Thus, the precision of our text mining pipe-

line on the top-2500 pairs can be estimated at 74.3% also counting

those pairs as positive that were already contained in one of the

RegDBs, or 60.4% when only considering TF-pairs not in current

databases. We also investigated how the truly interesting sentences

are distributed among all ranked sentences. Figure 3D shows the

precision, recall and F1-measure at increasing rank of the curated

sentence. It is reassuring for our approach that high ranks show

considerably higher precision than low ranking predictions. As the

recall is not saturating, curating further sentences will most likely

unveil much more regulatory relations (work ongoing). To exclude a

bias incurred by differences between the human experts which per-

formed the manual curation, we also compared the proportions of

their different evaluation results. Overall, reviewers obtained fairly

similar percentages of the different evaluation outcomes (see

Supplementary Table S2).

2.3 Manual curation of full texts establishes a high-

confidence regulatory network of human cells
In the first round of manual evaluation, sentences were only assessed

by the question whether or not they indicate that the article they are

contained in provide experimental evidence for a regulatory rela-

tionship between the two given TFs. In a second round of curation,

we studied in detail the full text of all 459 publications containing at

least one of the 660 relevant sentences to collect regulatory relation-

ship that have sufficient experimental evidence in the article. Each

evidence was manually classified according to the type of experi-

ments that were reported on in the article. This led to the identifica-

tion of 310 distinct TF-TF relationships supported by at least one of

the three evidences, including 128 relationships supported by all

three evidences, and 82 supported by exactly two. It is worth noting

that some of the reviewed full-text publications contained additional

annotations which had not been found in the abstracts, leading to

additional support of already known pairs.

In contrast, the RegDBs to-date contain 503 TF-TF relationships

supported by at least one evidence, but only 37 relationships sup-

ported by all three evidences (Fig. 3E, yellow bars). Furthermore,

the vast majority of regulations in the databases, 352 out of 503, are

solely supported by experiments showing a binding of a TF to the

promoter region of another TF (E1). The reliability of these inter-

actions remains unclear (Waldminghaus and Skarstad, 2010),

rendering those relationships less valuable from a biological point-

of-view. In contrast, altogether 189 TF-TF relationships found by

Fig. 1. Workflow of our approach. A classifier is trained on two gold standard

corpora and applied to all abstracts in PubMed and the Open Access portion

of PubMed Central. Positively classified sentences are partly curated manu-

ally and partly evaluated against RegulonDB

1260 P.Thomas et al.
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our curation workflow are supported by evidence E1 and also by E2

or E3 or both. Taken together, our approach increased the amount

of known and experimentally asserted regulatory interactions in the

human core regulatory network by 38% when compared with the

RegDBs as previous state-of-the-art (compare blue and yellow bars

in Fig. 3E; and Supplementary Table S3).

2.4 Comparison with a comprehensively hand-curated

subnetwork
To systematically assess whether the precision of our approach

could also be achieved using simpler methods, in particular simple

co-occurrence of TFs in the same sentence, we decided to manually

investigate all sentences with co-occurrence of two TFs of a specific

subnetwork. We focused on a list of 19 liver-enriched TFs (Tomaru

et al., 2009), for which we obtained 1435 sentences from 781 publi-

cations mentioning at least two of these 19 factors. We then manu-

ally curated all these sentences, without using a classifier for

filtering. Interestingly, only 61 (4.3%) of these 1435 sentences actu-

ally contained evidence for a regulatory relationship. This is in stark

contrast to results from the classification, where 660 pairs out of

1625 (39.4%) were manually evaluated as relevant. These data sug-

gest that our approach using top-ranked pairs increases the precision

roughly 10-fold compared with pure co-occurrence and thus drastic-

ally reduces the amount of time needed to find and curate

regulations.

For this particular 19-node subnetwork, only 12 interactions were

found in the three databases, and the curation of the 2500 sentences

led to the discovery of 10 additional interactions (see Fig. 4A). The

full analysis of all sentences with co-occurring TF pairs yielded only

seven additional connections, but required curation of 1435 sen-

tences—a hard-earned improvement. By focusing on this set of 1435

sentences, we also systematically assessed classifier performance in

A
Example from the GeneReg corpus

Example from the BioNLP’09 corpus.

B

16
5

1

302

67

114

Transfac

TRRD

ORegAnno

Fig. 2. Data sources. (A) Example sentences from the training corpora with regulatory relationship annotations visualized using (Stenetorp et al., 2011). (B) Venn-

diagram of the regulatory relations between two TFs in the databases TRANSFAC, TRRD and ORegAnno

A

C D E

B

Fig. 3. Curation of regulatory interactions (A) Number of sentences that were

considered in each of the steps of the pipeline. (B) Curator decisions for the

1625 sentences with highest rank. (C) The three evidence codes used for cur-

ation. (D) Precision, recall and F1-measure for manually curated sentences

ranked by their confidence score. (E) Frequency of the different evidence lev-

els for the existing relations in databases (yellow), or after full-text curation

(blue)

A B

C

Fig. 4. Benchmarking of classifier capacity by complete manual curation. (A)

Regulation network for liver specific TFs [list of TFs from (Tomaru et al.,

2009)]. Edges are categorized by respective source. Black, regulations con-

tained in existing RegDBs; Red, regulations added by manual curation of the

top scoring 2500 sentences; Orange, regulations found by manual curation of

all 1435 sentences with co-occuring liver specific TFs. Arrow shapes indicate

activation (arrow) and unclear regulation (circle). (B) Precision-recall plot on

the fully curated subnetwork of 1435 sentences. (C) ROC curve to asses classi-

fier performance on the fully curated subnetwork of 1435 sentences. Color

coding reflects classifier score (see legend)
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terms of precision, recall and receiver operating characteristic (ROC)

curve. Sentences with a high classifier score show a precision of about

0.4, and sentences with a positive score have a recall of 0.75 at a preci-

sion above 0.1 (see Fig. 4B). Similarly, the ROC-curve shows a very

low false-positive rate at classifier scores above 1, and a false-positive

rate of 0.35 at score 0 (see Fig. 4C).

2.5 Initial characterization of the human core regulatory

network
As our approach has reconstructed the largest available GRN for

human cells curated from low-throughput experiments so far, we

were highly interested in the topological properties of the network.

We found that the data obtained through our curation pipeline does

not only increase the number of regulatory relationships in the

human core network, but it also considerably changes the scope and

structure of the network.

As shown in Table 1, the number of interactions increases by

�60% and the number of TFs contained in the network increase by

�30% compared with those previously described in a RegDB. The

density of the network raises considerably; the average degree of

nodes increases from 3.58 to 4.38 (both in-degree—the number of

TFs regulating a TF—and out-degree—the number of TFs that regu-

late other TFs—increases, see Fig. 5B). The expanded network is

better connected (from 10 to 9 connected components), and the

diameter shrinks from 10 to 9. Thus, our workflow both increases

the number of TFs captured by the network and the amount of

knowledge on each TF within the network.

Figure 5A shows the full network, combining RegDBs and the

novel curated data. Nodes whose betweenness centrality score is the

highest, i.e. hubs in the network, are colored. Such genes have fre-

quently been associated to the onset of genetic diseases (Ideker and

Sharan, 2008) and, in particular, cancer (Li et al., 2012). The lists of

the top-10 genes ranked by betweenness-centrality for either net-

work are shown in Table 2. Although several known regulatory

hubs like SP1, FOS, MYC and P53 show high betweenness in both

networks, a number of important cancer genes, like BRCA1, MYB

and ESR1, rank highly only in the new combined network. A par-

ticular interesting case is HOXD13, which ranks highly in the com-

bined network, but is not even contained in the RegDB network.

These cases point to a bias in the selection of TFs and regulatory re-

lationships that are included into a RegDB. To investigate publica-

tion bias in our network due to occurrence in current literature, we

counted the occurrence of each TFs in PubMed, and plotted it

against the degree of the nodes. Clearly, degree and occurrence in

PubMed correlate (see Fig. 5C), indicating that the degree of TFs in

the network is largely determined by how intensely a TF is investi-

gated in the research community. However, such publication bias is

evidently inevitable for any literature-based approach, including all

literature-curated databases.

Analysis of the E.coli GRN has unveiled that certain wiring pat-

terns, so-called network motifs, are recurrent (Shen-Orr et al.,

2002). One of the most important over-represented pattern is feed-

forward loops by which a TF regulates a target both directly and

indirectly through a second TF. This motif, for instance, has been

implicated in sign-sensitive delays in signal processing or response

acceleration (Mangan and Alon, 2003). We applied motif analysis

(Wernicke and Rasche, 2006) to test if specific three-node network

motifs are over-represented also in the human core network.

Similarly to E.coli, we found that feed-forward loop patterns, in

their different flavors, are the only 3-node network motifs that are

strongly over-represented (Fig. 5D, Z>3, P<0.01). Interestingly,

some of these feed-forward loops contain two-node feedbacks, by

which two TFs that are within the feed-forward loop motif mutually

regulate each other.

2.6 Effects on gene prioritization in four cancer types
To test the effect of the expanded network on a typical experimental

data analysis procedure, we obtained RNA-Seq datasets from four

types of human cancer (lung, prostate, liver and lung) together with

corresponding healthy tissue samples from The Cancer Genome

Atlas Research Network (2013). For each cancer type, we per-

formed a network biology analysis which has proven more robust

for obtaining cancer-associated genes than conventional gene-based

differential analysis in several studies (Fuller et al., 2007; Ideker and

Krogan, 2012; Ortutay and Vihinen, 2009; Taylor et al., 2009;

Winter et al., 2012). Therein, correlation values between genes in

each sample first are mapped to a regulatory network build from

background knowledge. Next, genes in each network, i.e. healthy

and cancerous, are ranked according to their graph centrality. The

final ranking of genes is obtained by assessing the change in the cen-

trality rank and compared with sets of genes known to be very likely

associated to the respective cancer. Results are considerably better

in three out of the four cases and on-a-par in the forth, when using

the expanded network as background compared with using the

RegDB network (see Fig. 6). To test whether these improvements

could be artefacts of the increased network size, we also created

randomized networks of the same size and performed the same ana-

lysis. In three cases, results of the curated network are significantly

better than expected by chance; in the forth case, results are still bet-

ter but not significantly (P-value cutoff 0.05).

2.7 A database of human TF-TF regulatory relationships
The data assembled from several databases (e.g. TRANSFAC,

TRRD, ORegAnno) and our manual curation efforts was aggregated

into a database, which is accessible by our web-service FastForward

available at http://fastforward.sys-bio.net/. The web-service allows

users to search for proteins as regulators or as targets of an arbitrary

regulator. Result of an example search for the TF c-Fos is shown in

Supplementary Figure S2(a). On the left-hand side of the result page,

a list of TFs and TF complexes containing c-Fos is shown; the right-

hand side shows target genes regulated by another TF. A detailed

view of all genes regulated by c-Fos is shown in Supplementary

Figure S2(b), including the type of regulatory relationship (i.e. acti-

vation, inhibition or unknown) and the presence/absence of the

three individual evidences. Hovering over a specific evidence pro-

vides links to the respective publications. A particular feature of

FastForward is that users can also search for TF families. For in-

stance, a search for FOS returns all TFs associated with the FOS TF

family (e.g. Fra-1, Fra-2, JDP-2,. . .). The database is also provided as

Table 1. Characteristics of the human regulatory network

Only DBs Only Curated Combined

TFs 277 215 359

Regulatory relationships 503 332 807

Max degree 53 40 67

Average degree 3.58 2.97 4.38

Connected components 10 11 9

Diameter 10 10 9

(i) As represented in current databases; (ii) Data obtained by the workflow

described in this article; (iii) Combined dataset.

1262 P.Thomas et al.
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tab separated file, allowing for simple import into other databases

or analysis pipelines.

3 Conclusions

Consistently verified knowledge on human regulatory relationships

is still scarce and only achievable through costly low throughput ex-

periments. Nevertheless, such knowledge is of utmost importance

for further advancing research in human regulatory processes; this is

especially true when serving as background knowledge in the ana-

lysis of high-throughput datasets. Here, we presented a text-mining

assisted pipeline for targeted curation of a human core

A B

D

C

Fig. 5. Topology of the final, manually curated network. (A) Core GRN of human cells, including all evidence levels. Gray shade indicates centrality. (B) Overall de-

gree, in-degree and out-degree increase by expanding the network. Degree distributions of the network obtained from databases (black/solid line) and the final

network including the curated full texts. (C) The degree of each node strongly correlates with occurrence of the gene in PubMed. (D) The 3-node motifs that are

significantly over-represented in the network (compared with a randomized network with the same degree distributions) contain feed-forward loops

Table 2. List of the 10 highest ranked betweenness centrality genes

and the corresponding score in the three networks

Rank Only DBs Only curated Combined

1 SP1 0.493 MYC 0.496 SP1 0.319

2 FOS 0.177 TP53 0.177 MYC 0.251

3 TP53 0.177 SP1 0.135 TP53 0.168

4 MYC 0.097 HOXA10 0.13 FOS 0.118

5 JUN 0.093 PPARG 0.126 JUN 0.095

6 HNF4A 0.083 GATA1 0.121 BRCA1 0.083

7 WT1 0.08 MEIS1 0.111 ESR1 0.056

8 IGFBP1 0.063 ESR1 0.105 MYB 0.048

9 NR3C1 0.062 MYB 0.096 PPARG 0.047

10 BRCA1 0.057 CEBPD 0.094 E2F1 0.04

Fig. 6. Recovery rate of cancer-type associated genes using curated network

versus the existing network from databases or randomized networks. Genes

were ranked as described in the text and compared with gold standard gene

sets. When using the expanded network, recovery of gold standards is much

improved in three out of the four cases
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transcriptional network. We showed that using this pipeline pro-

vides a much less costly (in terms of human labor hours) approach

to the curation of regulatory relationships. Furthermore, we applied

our pipeline to abstracts from Medline and could thus, after an ex-

tensive manual post-processing step, generate the (to the best of our

knowledge) largest human TF network available today. Initial re-

sults of studying the properties of this network and using it in sys-

tems biology evaluations show promising results. Curation of the

literature following our pipeline is ongoing and should lead to fur-

ther growth of our datasets in the near future.

4 Materials and methods

4.1 TF classification
We assembled a list of human TFs as follows. We started with a list

of 1690 human TFs and their respective isoforms from (Wingender

et al., 2013) in the version present on the following website: http://

www.edgar-wingender.de/huTF_classification.html, version: June

19, 2011. We expanded this list by an additional 274 human TFs

assembled from literature, TRANSFAC, TRRD and ORegAnno.

HGNC gene names collected from literature are mapped to Entrez

Gene identifiers using BioMart (Haider et al., 2009). Mappings

retrieved by BioMart are than manually evaluated for correctness.

Our final list comprised 1056 unique Entrez Gene identifiers of

human TFs.

4.2 Curated regulatory databases
We compiled the existing knowledge for interactions between

human TFs from the following regulatory databases (RegDBs):

TRANSFAC [(Wingender, 2008), Release 12.1], TRRD (Kolchanov

et al., 2002) and ORegAnno (Griffith et al., 2008). We considered

only relationships which were annotated with supporting evidence

through at least one low-throughput experiment (e.g. no high dens-

ity Chip–Chip) and at least one publication. Supporting experiments

were classified into one or more of the three evidences categories

(see Supplementary File S3).

4.3 Corpora for training the sentence classifier
We train predictive models for recognizing binary regulatory rela-

tionships in text using two existing corpora: First, we used the

GeneReg corpus [version 1.0; (Buyko et al., 2010)], which is a set of

314 manually annotated Medline abstracts about gene regulation in

E.coli. We considered all interactions having a gene/protein as regu-

lator, yielding 1164 positive pairs. The remaining 1616 pairs were

used as negative examples. Second, we used the bio-molecular event

corpus of the BioNLP’09 Shared Task (Kim et al., 2009) consisting

of 951 abstracts that were selected by MeSH terms ‘Human’, ‘Blood

cells’ and ‘Transcription Factor’. Of all annotated relationships, we

considered all cases where the expression of a protein is regulated by

another protein as positive, resulting in 295 positive and �10 000

negative training examples. Classifiers often tend to keep the same

positive to negative ratio seen in the training phase (Chawla et al.,

2004). We counteracted this problem by applying higher penalty

costs for errors in the minority class (Veropoulos et al., 1999).

4.4 Classifying TF-pairs in sentences
We applied the relation extraction library described in (Tikk et al.,

2013) to identify regulatory relationships between pairs of genes

within a sentence. This library integrates sentence parsers (syntax

and dependency), format conversion routines, experiment manage-

ment and 13 algorithms for supervised relationship classification.

Based on the results from (Tikk et al., 2010), we used the two best

performing methods in our experiments: First, the shallow linguistic

[SL; (Giuliano et al., 2006)] kernel builds high-dimensional context

profiles based on words, stems and POS tags in near proximity of

the mentions and in the sentence containing the pair. Second, the

all-paths graph [APG; (Airola et al., 2008)] kernel requires that

sentences are first parsed to derive their dependency structure

(de Marneffe and Manning, 2008). APG then uses all features from

the SL classifier plus features derived from all paths connecting the

mentions in the dependency graphs.

4.5 Curation
We tagged all abstracts from PubMed (as of June 2010) using

GNAT (Hakenberg et al., 2011). We removed all sentences which

do not contain at least two human TFs and classified each remaining

pair using our classifier described earlier. Positively classified pairs

were ranked according to the classifiers confidence, and the top-

2500 were selected as candidates for further evaluation. For manual

curation, we filtered all candidates that were already present in

TRANSFAC, TRRD or ORegAnno and also those candidates that

were mentioned in publications already curated in one of these

knowledge bases. The remaining 1625 candidate sentences were

randomly split into five parts and manually evaluated by domain ex-

perts for evidence of regulatory relationships.

We adopted a two-phase curation, where in the first phase the

experts had to judge if the sentence suggests that the article contains

information about gene regulatory interactions, and in a second

phase the experts read the full-text articles. The final network was

then constructed using only those interactions where curators found

experimental evidence for regulatory interactions in the full texts.

To assess the benefit of our classification-based approach compared

with simple co-occurrence, we also curated all 1435 sentences con-

taining two different TFs from a list of 19 liver enriched TFs

(Tomaru et al., 2009), irrespectively of how these sentences were

classified.

4.6 Network construction
For network analysis, we mapped TFs to vertices and regulatory re-

lationships to edges in a graph. One obstacle in analyzing the ex-

tracted relationships in this manner is that TFs are often complexes

of proteins. For example, the TF AP-1 describes a complex that con-

tains a protein of the FOS family, and a protein of the JUN family.

To provide the highest level of detail for different types of analysis,

we retained the information if a TF was a single protein or a com-

plex during curation (and in our database) by means of our hierarch-

ical classification scheme (Wingender et al., 2013). For network

analysis, we decided to map the TFs to the genes that encode the

proteins contained in the TFs for network analysis. Thereby, we gen-

erated a network between genes, and each link between a TF and a

target gene may become multiple links if the TF is a complex, or can

contain several members of a family of proteins.

4.7 Differential centrality analysis
RNA-Seq dataset for healthy and cancerous samples were obtained

from the Cancer Gene Atlas (Accession ids: lung adenocarcinoma,

LUAD; prostate adenocarcinoma, PRAD; liver hepatocellular car-

cinoma, LIHC; breast invasive carcinoma, BRCA). Spearman correl-

ation of gene expression values within healthy and cancerous

samples, respectively, where computed and added as edge weights to

a background network of TFs. The centrality of TFs in the two net-

works per cancer was compared and TFs were finally ranked by the
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Diff-K measure (Fuller et al., 2007). We compared these ranked lists

to cancer-specific gene lists obtained from MalaCards (Rappaport

et al., 2013) to assess the ability of the background network to re-

cover known TF-disease associations. For evaluating the usefulness

of our curation approach, we performed this analysis twice, using

once the Reg-DB network as background and once the expanded

network, and compared results.

Furthermore, we tested if the observed improvements are only

an effect of the increased network size, but not due to specific novel

TFs and relationships. To this end, we generated randomized net-

works as competitors for the expanded network as follows. We

started with the Reg-DB network, as it is the common core con-

tained in all networks considered here. We added as many TFs as

the expanded network has more than the Reg-DB network, drawn

randomly from our list of human TFs. In this process, the chance to

draw a specific TF from the list equals its relative occurrence in

PubMed. We then computed a random mapping between the add-

itional TFs in the expanded network and the randomly chosen add-

itional TFs in the randomized network and added as many random

edges to each added TFs in the randomized network as its counter-

part has in the expanded network. We generated 100 networks for

each cancer type following this procedure and computed the distri-

bution of recovery rates (see Fig. S1 in Supplementary Materials).
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Röttger,R. et al. (2012). How little do we actually know? On the size of gene

regulatory networks. IEEE/ACM Trans. Comput. Biol. Bioinform., 9,

1293–1300.

Shen-Orr,S.S. et al. (2002). Network motifs in the transcriptional regulation

network of Escherichia coli. Nat. Genet., 31, 64–68.

Stelniec-Klotz,I. et al. (2012). Reverse engineering a hierarchical regulatory

network downstream of oncogenic KRAS. Mol. Syst. Biol., 8, 601.

Stenetorp,P. et al. (2011). BioNLP shared task 2011: Supporting resources. In

Proceedings of BioNLP Shared Task 2011 Workshop, Oregeon, USA, pp.

112–120.

Taylor,I.W. et al. (2009). Dynamic modularity in protein interaction

networks predicts breast cancer outcome. Nat. Biotechnol., 27, 199–204.

The Cancer Genome Atlas Research Network (2013). The Cancer Genome

Atlas. http://cancergenome.nih.gov.

Tikk,D. et al. (2010). A comprehensive benchmark of kernel methods to ex-

tract protein-protein interactions from literature. PLoS Comput. Biol., 6,

e1000837.

Tikk,D. et al. (2013). A detailed error analysis of 13 kernel methods for pro-

tein-protein interaction extraction. BMC Bioinformatics, 14, 12.

Tomaru,Y. et al. (2009). Identification of an inter-transcription factor regula-

tory network in human hepatoma cells by Matrix RNAi. Nucleic Acids

Res., 37, 1049–1060.

Vaquerizas,J. et al. (2009). A census of human transcription factors: function,

expression and evolution. Nat. Rev. Genet., 10, 252–263.

Veropoulos,K. et al. (1999). Controlling the sensitivity of support vector ma-

chines. In Proceedings of Inertnational Joint Conference on Artificial

Intelligence (IJCAI99), Stockholm, Sweden, pp. 55–60.

Computer-assisted curation of a human regulatory core network 1265

 at C
haritÃ

©
 - U

niversitaetsm
edizin B

erlin on O
ctober 23, 2015

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

(
(
, 
, 
, 
, 
, 
transcription factor
, 
, 
transcription factor
, 
transcription factor
transcription factor
 (
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu795/-/DC1
http://cancergenome.nih.gov
http://bioinformatics.oxfordjournals.org/


Waldminghaus,T. and Skarstad,K. (2010). Chip on chip: surprising results are

often artifacts. BMC Genomics, 11, 414.

Wernicke,S. and Rasche,F. (2006). FANMOD: a tool for fast network motif

detection. Bioinformatics, 22, 1152–1153.

Wingender,E. (2008). The TRANSFAC project as an example of framework

technology that supports the analysis of genomic regulation. Brief.

Bioinform., 9, 326–332.

Wingender,E. et al (2013). TFClass: An expandable hierarchical classification

of human transcription factors. Nucleic Acids Res., 41, D165–D170.

Winter,C. et al. (2012). Google goes cancer: improving outcome prediction for

cancer patients by network-based ranking of marker genes. PLoS Comput.

Biol., 8, e1002511.

Yusuf,D. et al. (2012). The transcription factor encyclopedia. Genome Biol.,

13, R24.

1266 P.Thomas et al.

 at C
haritÃ

©
 - U

niversitaetsm
edizin B

erlin on O
ctober 23, 2015

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/

	btu795-TF1

