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RESULTS
We applied FdRA to five distinct 
PD models [7] in up to four fla-
vours (Fig. 4 left column). We 
observed that the pool/precursor 
model as well as the autoregula-
tion model with negative feed-
back are the only ones to atten-
uate long period dosing regimen 

while all others amplify plasma 
concentration amplitudes. Short 
period dosing regimen are atten-
tuated in all models. Next, we ex-
cited the nonlinear versions of the 
models with a one compartment 
IV bolus PK and performed com-
putationally expensive FdRA for 

drugs of different half-lives. Sur-
prisingly, this numerical FdRA re-
sulted in similar Bode plot shapes 
(Fig. 4 right column) as compared 
to analytical FdRA. But, due to the 
linearisation in the analytical FdRA 
only the numerical FdRA can re-
solve all flavours of the models.

Figure 4: Comparison between the analytically and numerically determined frequency responses for five pharma-
codynamic models.
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METHODS

A simple pool/precursor model is 
depicted in Fig. 1 and defined by

wherein δ(u) = 1 + α1u
α2+u is the 

drug effect. The unforced system 
has x̄1 = x̄2 = β

γ
 as steady-state 

from which the Jacobian matrix 
with respect to the model states 
x follows to:

Since all eigenvalues of A have 

negative real parts the steady-
state is stable [6]. Thus, we can 
linearise the model around this 
stable steady-state and express 
it in state-space respresentation 
as

with 

depicting the Jacobian matrix 
with respect to the model in-
puts u. Here, we defined the out-
put y of the model to be x2, i.e. 
cT =

[
0 1

]
 and d = 0. Exciting 

the linearised model with three 
sinusoidal inputs of different 

periods and results in the time 
courses shown in Fig. 2.
The relation between input fre-
quency and output amplitude 
can now be expressed in terms 
of a transfer function as:

wherein s is the Laplace variable. 
The transfer function can now 
be used to collect the responses 
of the linearised system to sinu-
soidal inputs over a wide range 
of frequencies with the help of a 
Bode plot . Its magnitude is de-
fined as:

and represents the logarithmic 
ratio of the output and the input 

amplitude. 
For the given pool/precursor 
model the transfer function is:

and with α1 = β = γ = 1 and 
α2 = 0.25 the Bode plot of the 
linearised pool/precursor model 
is displayed in Fig. 3.
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Figure 1: Pool/precursor model
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Figure 2: Time courses of the linearised model for three input periods.

Figure 3: Bode plot
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ẋ = Ax+ bu
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CONCLUSION
Frequency-domain response analysis …

 … is a fast pen and paper method to asses drug dosing regimen.
 … is highly comparable with the computationally expensive nonlinear 
model simulations.

 … identifies drug dosing periods for which plasma concentration ampli-
tude is attenuated/amplified in the response.

 … allows for analytical drug dosing regimen optimisation.

INTRODUCTION
It was recently demonstrated that 
key biological control systems 
(such as the MAPK pathway) are 
highly sensitive to the frequen-
cy of external stimuli in a non-in-
tuitive manner which cannot be 
predicted by conventional phar-
macometrics approaches [1]. This 

suggests that quantitative sys-
tems pharmacology (QSP) can 
provide novel insights into opti-
mal dosing regimens which could 
add a new dimension to the de-
sign of novel treatments. How-
ever, methods for such an ap-
proach are currently lacking. We 

therefore apply frequency-do-
main response analysis (FdRA), a 
method widely used in engineer-
ing [2,3] and already employed 
for systems biology models in S. 
cerivisae [1,4,5], to optimise drug 
treatment regimen of drug toler-
ance QSP models.
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