Frequency-domain response analysis for quantitative systems pharmacology models

Pascal Schulthess

Systems Pharmacology

Leiden Academic Centre for Drug Research
Leiden University, The Netherlands

Go home, get some rest, you'll feel better in a couple of days.

Take this drug every 12 hours for one week.

Take this drug every 12 hours for one week.

What is the response to dosing frequency changes?

Introduction to
 frequency-domain response analysis (FdRA)

A tolerance and rebound PD model

A tolerance and rebound PD model

Plasma concentration
Effect

A tolerance and rebound PD model

Example: PD model structure

Example: PD model equations

$$
\begin{aligned}
\frac{d R}{d t} & =k_{\text {in }} H(C)-k_{\text {out }} M \\
\frac{d M}{d t} & =k_{\text {tol }}(R-M)
\end{aligned}
$$

A tolerance and rebound PD model

Plasma concentration

Example: PD model structure

Example: PD model equations

$$
\begin{aligned}
& \dot{x}_{1}(t)=u(t)-\alpha x_{2}(t) \\
& \dot{x}_{2}(t)=\beta\left(x_{1}(t)-x_{2}(t)\right)
\end{aligned}
$$

PD model in state-space representation

Example: PD model in matrix notation

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{x}_{1}(t) \\
\dot{x}_{2}(t)
\end{array}\right] } & =\left[\begin{array}{ll}
0 & -\alpha \\
\beta & -\beta
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u(t) \\
y(t) & =\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+0 \cdot u(t)
\end{aligned}
$$

PD model in state-space representation

Example: PD model in matrix notation

$$
\begin{aligned}
& \dot{x}(t)=\left[\begin{array}{ll}
0 & -\alpha \\
\beta & -\beta
\end{array}\right] x(t)+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u(t) \\
& y(t)=\left[\begin{array}{ll}
1 & 0
\end{array}\right] x(t)+0 \cdot u(t)
\end{aligned}
$$

PD model in state-space representation

Example: PD model in matrix notation

$$
\begin{aligned}
& \dot{x}(t)=\underbrace{\left[\begin{array}{ll}
0 & -\alpha \\
\beta & -\beta
\end{array}\right]}_{A} x(t)+\underbrace{\left[\begin{array}{l}
1 \\
0
\end{array}\right]}_{b} u(t) \\
& y(t)=\underbrace{\left[\begin{array}{ll}
1 & 0
\end{array}\right]}_{c^{T}} x(t)+\underbrace{0}_{d} \cdot u(t)
\end{aligned}
$$

PD model in state-space representation

Example: PD model in matrix notation

$$
\begin{aligned}
& \dot{x}(t)=\underbrace{\left[\begin{array}{ll}
0 & -\alpha \\
\beta & -\beta
\end{array}\right]}_{A} x(t)+\underbrace{\left[\begin{array}{l}
1 \\
0
\end{array}\right]}_{b} u(t) \\
& y(t)=\underbrace{\left[\begin{array}{ll}
1 & 0
\end{array}\right]}_{c^{\top}} x(t)+\underbrace{0}_{d} \cdot u(t)
\end{aligned}
$$

Definition (State-space representation)

A SISO LTI system can be written as

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+b u(t) \\
y(t) & =c^{\top} \boldsymbol{x}(t)+d u(t) .
\end{aligned}
$$

What is the response to dosing frequency changes?

How are input u and output y connected?

Transfer function connects input to output

$$
u(t) \rightarrow g(t) \longrightarrow y(t)
$$

Time domain

$$
\begin{aligned}
& \dot{\boldsymbol{x}}(t)=A \boldsymbol{x}(t)+b u(t) \\
& y(t)=c^{T} \boldsymbol{x}(t)+d u(t)
\end{aligned}
$$

Transfer function connects input to output

$$
u(t) \longrightarrow g(t) \longrightarrow y(t)
$$

Time domain

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+b u(t) \\
& y(t)=c^{\top} \boldsymbol{x}(t)+d u(t)
\end{aligned}
$$

$$
U(s) \rightarrow G(s) \rightarrow Y(s)
$$

Frequency domain

$$
\begin{aligned}
s X(s) & =A X(s)+b U(s) \\
Y(s) & =c^{\top} X(s)+d U(s)
\end{aligned}
$$

Transfer function connects input to output

$$
u(t) \longrightarrow g(t) \longrightarrow y(t)
$$

Time domain

$$
\begin{aligned}
& \dot{x}(t)=A \boldsymbol{x}(t)+b u(t) \\
& y(t)=c^{\top} \boldsymbol{x}(t)+d u(t)
\end{aligned}
$$

$$
U(s) \longrightarrow G(s) \longrightarrow Y(s)
$$

Frequency domain

$$
\begin{aligned}
s X(s) & =A X(s)+b U(s) \\
Y(s) & =c^{\top} X(s)+d U(s)
\end{aligned}
$$

Definition (Transfer function)

For a SISO LTI system and $x(0)=x_{0}$, the transfer function follows to

$$
G(s)=\frac{Y(s)}{U(s)}=c^{\top}(s I-A)^{-1} b+d
$$

Transfer function of PD model

Example: PD model

For

$$
\begin{aligned}
& \dot{x}(t)=\underbrace{\left[\begin{array}{ll}
0 & -\alpha \\
\beta & -\beta
\end{array}\right]}_{A} x(t)+\underbrace{\left[\begin{array}{l}
1 \\
0
\end{array}\right]}_{b} u(t) \\
& y(t)=\underbrace{\left[\begin{array}{ll}
1 & 0
\end{array}\right]}_{C^{T}} x(t)
\end{aligned}
$$

the transfer function follows to

$$
\begin{aligned}
G(s) & =c^{T}(s I-A)^{-1} b+d=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{cc}
s & -\alpha \\
\beta & s+\beta
\end{array}\right]^{-1}\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& =\frac{s+\beta}{s^{2}+\beta s+\alpha \beta} .
\end{aligned}
$$

How are input u and output y connected?

How are input u and output y connected?

$$
Y(s)=G(s) U(s)
$$

What is the response to dosing frequency changes?

Sinusoidal inputs determine frequency response

Sinusoidal inputs determine frequency response

Plasma concentration

$$
u(t)=\sin (\omega t) \longrightarrow G(s) \longrightarrow y(t)
$$

Sinusoidal inputs determine frequency response

Plasma concentration
Effect

$$
u(t)=\sin (\omega t) \longrightarrow G(s) \longrightarrow y(t)=y_{0} \sin (\omega t+\varphi)
$$

Sinusoidal inputs determine frequency response

Sinusoidal inputs determine frequency response

Effect

$$
u(t)=\sin (\omega t) \longrightarrow G(i \omega) \rightarrow y(t)=y_{0} \sin (\omega t+\varphi)
$$

with

- magnitude $y_{0}=|G(i \omega)|$

Sinusoidal inputs determine frequency response

with

- magnitude $y_{0}=|G(i \omega)|$
- phase shift $\varphi_{y}=\arg G(i \omega)$

Bode plot visualises frequency response

Bode plot visualises frequency response

Bode plot visualises frequency response

Bode plot visualises frequency response

Bode plot visualises frequency response

Parameter choice affects behaviour

Bode plot

Parameter change: - down - up

Alternative treatment scheme to optimise effect amplitude

Alternative treatment scheme to optimise effect amplitude

Result

Treatment every 8 hours minimises effect amplitude.

Alternative treatment scheme to optimise effect amplitude

Result

Treatment every 24 hours maximises effect amplitude.

FdRA supports optimisation of treatment schemes.

FdRA application 1: Prolactin model with positive feedback

Precursor-pool model for prolactin with positive feedback

Precursor-pool model for prolactin with positive feedback

Precursor-pool model for prolactin with positive feedback

Nonlinear ODEs of nondimensionalised model

$$
\begin{aligned}
\dot{x}_{1}(t) & =\alpha\left(1+\frac{\beta\left(x_{2}(t)-1\right)}{\gamma+x_{2}(t)-1}-x_{1}(t) u(t)\right) \\
\dot{x}_{2}(t) & =x_{1}(t) u(t)-x_{2}(t) \\
y(t) & =x_{2}(t)
\end{aligned}
$$

Precursor-pool model for prolactin with positive feedback

Linearisation around stable steady state

$$
\begin{aligned}
& \dot{x}(t)=\left[\begin{array}{cc}
-\alpha & \frac{\alpha \gamma}{\beta} \\
1 & -1
\end{array}\right] x(t)+\left[\begin{array}{c}
-\alpha(1+\beta-\gamma) \\
1+\beta-\gamma
\end{array}\right] u(t) \\
& y(t)=\left[\begin{array}{ll}
0 & 1
\end{array}\right] x(t)
\end{aligned}
$$

Precursor-pool model for prolactin with positive feedback

Linearisation around stable steady state

$$
\begin{aligned}
& \dot{x}(t)=\left[\begin{array}{cc}
-\alpha & \frac{\alpha \gamma}{\beta} \\
1 & -1
\end{array}\right] x(t)+\left[\begin{array}{c}
-\alpha(1+\beta-\gamma) \\
1+\beta-\gamma
\end{array}\right] u(t) \\
& y(t)=\left[\begin{array}{ll}
0 & 1] x(t)
\end{array}\right.
\end{aligned}
$$

Transfer function

$$
G(s)=\frac{(1+\beta-\gamma) s}{s^{2}+(1+\alpha) s+\alpha\left(1-\frac{\gamma}{\beta}\right)}
$$

Input/output behaviour

Input/output behaviour

Input/output behaviour

Input/output behaviour

Input/output behaviour

Input/output behaviour

Treatment options

Treatment options

Treatment options

Result

FdRA identified an amplification of the input for all reasonable dosing intervals.

FdRA application 2: Oscillatory stress stimulation of yeast

Generation time has sensitive frequency at 8 min

Model structure

Can FdRA confirm the results?

Can FdRA confirm the results?

Result

Maximal generation time is not reached at 8 min but rather at 10.5 min .

FdRA supports the importance of models for experiment planning.

FdRA as an interactive semi-automated web application

R Shiny application

pascal.schulthess.io/fdra

Conclusion \& outlook

Conclusion

Frequency-domain response analysis
Prolactin model with positive feedback
Osciallatory stress stimulation of yeast

Conclusion

Frequency-domain response analysis

- applicable to linear time-invariant systems
- informs on
- input amplification/attenuation
- time scales
- allows optimisation of dosing frequency

Prolactin model with positive feedback
Osciallatory stress stimulation of yeast

Conclusion

Frequency-domain response analysis

- applicable to linear time-invariant systems
- informs on
- input amplification/attenuation
- time scales
- allows optimisation of dosing frequency

Prolactin model with positive feedback

- amplification of the input for all reasonable dosing intervals

Osciallatory stress stimulation of yeast

Conclusion

Frequency-domain response analysis

- applicable to linear time-invariant systems
- informs on
- input amplification/attenuation
- time scales
- allows optimisation of dosing frequency

Prolactin model with positive feedback

- amplification of the input for all reasonable dosing intervals

Osciallatory stress stimulation of yeast

- input period of 10.5 min leads to maximal generation time

Outlook

- Which systems give rise to which response behaviour?

Outlook

- Which systems give rise to which response behaviour?
- Can FdRA identify model structures from experiments?

Outlook

- Which systems give rise to which response behaviour?
- Can FdRA identify model structures from experiments?
- Is FdRA able to suggest (better) treatment schedules?

Outlook

- Which systems give rise to which response behaviour?
- Can FdRA identify model structures from experiments?
- Is FdRA able to suggest (better) treatment schedules?
- Can FdRA be extended to allow combinatory treatments?

Outlook

- Which systems give rise to which response behaviour?
- Can FdRA identify model structures from experiments?
- Is FdRA able to suggest (better) treatment schedules?
- Can FdRA be extended to allow combinatory treatments?
- How to incorporate FdRA into clinical practice?

Acknowledgements

- Piet Hein van der Graaf (@certara, @lacdr.leidenuniv)
- James Yates (@astrazeneca)
- Teun Post (@lapp, @lacdr.leidenuniv)
- Vivi Rottschäfer (@math.leidenuniv)

pascal.schulthess.io

