Binding Site Cooperativity and Dual Signal Integration in CYP1A1 Induction

Pascal Schulthess, Albert Braeuning, Alexandra Löffler, Michael Schwarz, and Nils Blüthgen

CYP1A expression in liver

Braeuning, A. & Schwarz, M. Biol. Chem. 391, 139–148 (2010) Braeuning, A., Köhle, C., Buchmann, A. & Schwarz, M. Toxicol. Sci. 122, 16–25 (2011).

CYP1A expression in liver

CYP1A

Braeuning, A. & Schwarz, M. Biol. Chem. 391, 139–148 (2010) Braeuning, A., Köhle, C., Buchmann, A. & Schwarz, M. Toxicol. Sci. 122, 16–25 (2011).

CYP1A expression in liver

Braeuning, A. & Schwarz, M. Biol. Chem. 391, 139–148 (2010) Braeuning, A., Köhle, C., Buchmann, A. & Schwarz, M. Toxicol. Sci. 122, 16–25 (2011).

1D data

1D data shows cooperativity of binding sites

promoter logic

promoter logic

promoter logic

promoter logic

strongest binding sites

strongest binding sites recruit RNA Polymerase

strongest binding sites recruit RNA Polymerase

B site most important cooperation partner

strongest binding sites recruit RNA Polymerase

B site most important cooperation partner

CYP1A1 expression modulated by B-catenin & TCDD

Braeuning, A., Köhle, C., Buchmann, A. & Schwarz, M. Toxicol. Sci. 122, 16–25 (2011).

AhR expression not modulated by ß-catenin & TCDD

Braeuning, A., Köhle, C., Buchmann, A. & Schwarz, M. Toxicol. Sci. 122, 16–25 (2011).

2D data shows interplay of B-catenin & TCDD

PL model unable to describe B-catenin integration

PL model unable to describe B-catenin integration

promoter logic

Modeling approach – adding TF formation

transcription factor formation +

promoter logic

PL + TFF model capture dual signal integration

Conclusions

Cooperativity of CYP1A1 promoter binding sites

Dual signal integration on CYP1A1 promoter

Conclusions

- Cooperativity of CYP1A1 promoter binding sites
 - 2 strongest binding sites control recruitment of RNAP
 - second DRE is most important cooperation partner
- Dual signal integration on CYP1A1 promoter

Conclusions

- Cooperativity of CYP1A1 promoter binding sites
 - 2 strongest binding sites control recruitment of RNAP
 - second DRE is most important cooperation partner
- Dual signal integration on CYP1A1 promoter
 - simple promoter logic not sufficient to capture effect of B-catenin on CYP1A1 expression
 - additional transcription factor formation necessary
 - combined models capture dual signal integration

Acknowledgements

<u>Systems Biology of Molecular</u> <u>Networks Group @ Charité</u>

- Nils Blüthgen
- Pawel Durek
- RaphaelaFritsche
- Manuela
 Benary
- Anja Sieber

- Nadine Schmidt
- Kajetan Bentele
- Bertram Klinger
- Johannes Meisig
- Jörn Schmiedel
- Franziska Witzel

<u>Department of Toxicology</u> <u>@ Uni Tübingen</u>

- Michael Schwarz
- Albert Braeuning
- Alexandra Löffler

Funding

Research Units for Systems Biology

Federal Ministry of Education and Research