Cooperativity between Aryl Hydrocarbon Receptor and ß-catenin Binding Sites in Hepatocytes

Pascal Schulthess, Albert Braeuning, Alexandra Löffler, Michael Schwarz, and Nils Blüthgen

Cytochrome P450 (CYP)

- oxidate hydrophobic substances \mapsto hydrophilic substances
 - easier excretion
- essential for metabolizing many drugs & toxins
- strong expression in the liver & colon

CYP1A1 expression gradient in liver lobules

normal liver

CYP1A1 expression gradient in liver lobules

normal liver

B-catenin k.o.

Braeuning, A. & Schwarz, M. Biol. Chem. 391, 139–148 (2010)

CYP1A1 expression induced by Wnt

Braeuning, A., Köhle, C., Buchmann, A. & Schwarz, M. Toxicol. Sci. 122, 16–25 (2011).

CYP1A1 expression induced by Wnt & Dioxin

Braeuning, A., Köhle, C., Buchmann, A. & Schwarz, M. Toxicol. Sci. 122, 16–25 (2011).

15 human CYP1A1 promotor constructs

15 human CYP1A1 promotor constructs

15 human CYP1A1 promotor constructs

Data show more-than-additive effects

Parameters of thermodynamic model

Bintu, L. et al. Curr. Opin. Genet. Dev. 15, 116–124 (2005).

Parameters of thermodynamic model

Bintu, L. et al. Curr. Opin. Genet. Dev. 15, 116–124 (2005).

Parameters of thermodynamic model

Fold change model expressed with mass action kinetics

Bintu, L. et al. Curr. Opin. Genet. Dev. 15, 116–124 (2005).

Maximum likelihood fit of thermodynamic model

Prediction of thermodynamic model

Interpretation of model parameters

strongest binding sites

Interpretation of model parameters

strongest binding sites recruit RNA Polymerase

Interpretation of model parameters

strongest binding sites recruit RNA Polymerase

only some cooperations are essential

TCF binding site interactions

Experiments

Thermodynamic model

TCF binding site interactions

Experiments

Thermodynamic model

TCF binding site interactions not trivial

Conclusion

Conclusion

DRE binding sites

- works according to convential paradigm of promotors
 - 2 strongest binding sites control recruitment of RNAP
 - cooperativity essential

Conclusion

DRE binding sites

- works according to convential paradigm of promotors
 - 2 strongest binding sites control recruitment of RNAP
 - cooperativity essential
- ► <u>TCF binding site</u>
 - contradicts convential paradigm of promotors
 - needs active regulation
 - Mechanism?
 - needs further experiments

Acknowledgements

<u>Systems Biology of Molecular</u> <u>Networks Group @ Charité</u>

- Nils Blüthgen
- Pawel Durek
- Raphaela Fritsche
- Anja Sieber
- ► Nadine Schmidt ► Martina
- Kajetan Bentele Klünemann

- Bertram Klinger
- ► Johannes Meisig
- ▶ Jörn Schmiedel
- Franziska Witzel

<u>Department of Toxicology</u> <u>@ Uni Tübingen</u>

- Michael Schwarz
- Albert Braeuning
- Alexandra Löffler

<u>Funding</u>

Research Units for Systems Biology

Federal Ministry of Education and Research

SPONSORED BY THE